codevs2572 路面修整

题目描述 Description

Mr. Ling打算好好修一下学校门口的那条凹凸不平的路。按照Mr. Ling的设想,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中。

整条路被分成了N段,N个整数A_1,…,A_N依次描述了每一段路的高度。Mr.Ling希望找到一个恰好含N个元素的不上升或不下降序列B_1,...,B_N,作为修过的路中每个路段的高度。由于将每一段路垫高或挖低一个单位的花费相同,修路的总支出可以表示为:

|A_1 - B_1| + |A_2 - B_2| + ... + |A_N - B_N|

请你计算一下,Mr. Ling在这项工程上的最小支出是多少。Mr. Ling向你保证,这个支出不会超过2^31-1。

输入描述 Input Description

第1行:输入1个整数N;

第2..N+1行:第i+1行为i个整数A_i

输出描述 Output Description

第1行:输出1个正整数,表示把路修成高度不上升或高度不下降的最小花费。

样例输入 Sample Input

7

1

3

2

4

5

3

9

样例输出 Sample Output

3

数据范围及提示 Data Size & Hint

【样例说明】

将第一个高度为3的路段的高度减少为2,将第二个高度为3的路段的高度增加到5,总花费为|2-3|+|5-3| = 3,并且各路段的高度为一个不下降序列1,2,2,4,5,5,9。

【数据范围】

30%的数据:1< N≤50,0≤ A_i ≤1,000;

100%的数据:1≤ N≤2000,0≤ A_i ≤1,000,000,000。

/*
修改次数不会达到n,修改的数值一定是原先存在的
*/
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
const int maxn = 2005;
const ll inf = 98765432101234LL;
struct orz{
    ll p;
    ll v;
};
bool cmp(orz a,orz b){
    return a.v < b.v;
}
ll n,k,a[maxn],dp[maxn][maxn],dp2[maxn][maxn],ans;
orz b[maxn];
inline ll read(){
    char ch=getchar();
    ll f=1,x=0;
    while(!(ch>=‘0‘&&ch<=‘9‘)){if(ch==‘-‘)f=-1;ch=getchar();};
    while(ch>=‘0‘&&ch<=‘9‘){x=x*10+(ch-‘0‘);ch=getchar();};
    return x*f;
}

int main(){
    n = read();
    for(int i = 1;i <= n;i++){
        a[i] = b[i].v = read();
        b[i].p = i;
    }
    sort(b+1,b+1+n,cmp);
    for(int i = 1;i <= n;i++){
        for(int j = 0;j <= n;j++){
            dp[i][j] = dp2[i][j] = inf;
        }
    }
    for(int i = 1;i <= n;i++){
        for(int j = 1;j <= n;j++){
            dp[i][j] = min(dp[i][j],dp[i][j-1]);
            dp[i][j] = min(dp[i][j],dp[i-1][j]+abs(b[j].v-a[i]));
        }
    }
    for(int i = n;i >= 1;i--){
        for(int j = 1;j <= n;j++){
            dp2[i][j] = min(dp2[i][j],dp2[i][j-1]);
            dp2[i][j] = min(dp2[i][j],dp2[i+1][j]+abs(b[j].v-a[i]));
        }
    }
    cout<<min(dp[n][n],dp2[1][n])<<endl;
    return 0;
}
时间: 2024-10-31 00:59:07

codevs2572 路面修整的相关文章

BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整( dp )

最优的做法最后路面的高度一定是原来某一路面的高度. dp(x, t) = min{ dp(x - 1, k) } + | H[x] - h(t) | ( 1 <= k <= t ) 表示前 i 个路面单调不递减, 第 x 个路面修整为原来的第 t 高的高度. 时间复杂度O( n³ ). 令g(x, t) = min{ dp(x, k) } (1 <= k <= t), 则转移O(1), g() 只需在dp过程中O(1)递推即可, 总时间复杂度为O( n² ) 然后单调不递增也跑一遍

[BZOJ1592][Usaco2008 Feb]Making the Grade 路面修整

1592: [Usaco2008 Feb]Making the Grade 路面修整 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 735  Solved: 509 [Submit][Status][Discuss] Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ...

[usaco2008feb_gold]路面修整

  FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ... , A_N (1 <= N <= 2,000)依次描述了每一段路的高度(0 <= A_i <= 1,000,000,000).FJ希望找到一个恰好含N个元素的不上升或不下降序列B_1, ... , B_N,作为修过的路中每个路段的高度.由于将每一段路垫高或挖低一个单位的花费

BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整

Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ... , A_N (1 <= N <= 2,000)依次描述了每一段路的高度(0 <= A_i <= 1,000,000,000).FJ希望找到一个恰好含N个元素的不上升或不下降序列B_1, ... , B_N,作为修过的路中每个路段的高度.由于将每一段路垫高

7.3 路面修整

[题目描述] FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ... , A_N (1 <= N <= 2,000)依次描述了每一段路的高度(0 <= A_i <= 1,000,000,000).FJ希望找到一个恰好含N个元素的不上升或不下降序列B_1, ... , B_N,作为修过的路中每个路段的高度.由于将每一段路垫高或挖低一个

BZOJ 1592 Usaco 2008 Feb Making the Grade 路面修整 DP

题目大意:给出一个不整齐的路面,可以将一个路面升高或者降低,都需要话费|x - x'|的费用,把路面修正成单调不降或单调不升的最小花费是多少. 思路:路面的高度跨度有点大啊,先离散化.之后f[i][j] 表示到i为止路面保证单调不降并且最高高度为j的最小花费是多少,利用一个前缀和优化一下.单调不升也一样,简单DP水过.. CODE: #include <map> #include <cstdio> #include <cstring> #include <iost

【bzoj1592/Usaco2008 Feb】Making the Grade 路面修整——dp

Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ... , A_N (1 <= N <= 2,000)依次描述了每一段路的高度(0 <= A_i <= 1,000,000,000).FJ希望找到一个恰好含N个元素的不上升或不下降序列B_1, ... , B_N,作为修过的路中每个路段的高度.由于将每一段路垫高

【BZOJ 1592】[Usaco2008 Feb]Making the Grade 路面修整 dp优化之转移变状态

我们感性可证离散(不离散没法做),于是我们就有了状态转移的思路(我们只考虑单不减另一个同理),f[i][j]到了第i块高度为j的最小话费,于是我们就可以发现f[i][j]=Min(f[i-1][k])+|a[i]-j|(k<=j),于是我们的思路就去了各种数据结构--.然后我们发现对于这些转移就是在记录小于等于,那么我们直接带状态里体现这一点就可以了,而不是在转移的时候,我们f[i][j]表示到了第i个点小于等于j的高度的最小花费,这样我们就n^2了. #include <cstdio>

2014-5-16 NOIP模拟赛

Problem 1 抓牛(catchcow.cpp/c/pas) [题目描述] 农夫约翰被通知,他的一只奶牛逃逸了!所以他决定,马上出发,尽快把那只奶牛抓回来. 他们都站在数轴上.约翰在N(O≤N≤100000)处,奶牛在K(O≤K≤100000)处.约翰有两种办法移动,步行和瞬移:步行每秒种可以让约翰从x处走到x+l或x-l处:而瞬移则可让他在1秒内从x处消失,在2x处出现.然而那只逃逸的奶牛,悲剧地没有发现自己的处境多么糟糕,正站在那儿一动不动. 那么,约翰需要多少时间抓住那只牛呢? [输入