Caffe+Ubuntu 14.04.4+CUDA7.5安装

ubuntu 14.04安装




cuda7.5安装

  1. cuda7.5下载:地址 https://developer.nvidia.com/cuda-downloads

    文件: cuda_7.5.18_linux.run

  2. 登录界面前按Ctrl+Alt+F1进入命令提示符 【禁用nouveau驱动】
  3. 执行命令: sudo vi /etc/modprobe.d/blacklist-nouveau.conf
  4. 输入以下内容
    blacklist nouveau
    options nouveau modset=0
    

    最后保存退出(:wq)

  5. 执行命令: sudo update-initramfs -u

    再执行命令: lspci | grep nouveau 查看是否有内容

    如果没有内容 ,说明禁用成功,如果有内容,就重启一下再查看

    sudo reboot

    重启后,进入登录界面的时候,不要登录进入桌面,直接按Ctrl+Alt+F1进入命令提示符。

  6. 重启后,登录界面时直接按Ctrl+Alt+F1进入命令提示符
  7. 安装依赖项:

    sudo service lightdm stop

    sudo apt-get install g++

    sudo apt-get install git

    sudo apt-get install freeglut3-dev

  8. 假设cuda_7.5.18_linux.run位于 ~ 目录,切换到~目录: cd ~
  9. 执行命令: sudo sh cude_7.5.18_linux.run
  10. 安装的时候,要让你先看一堆文字(EULA),我们直接不停的按空格键到100%,然后输入一堆accept,yes,yes或回车进行安装。安装完成后,重启,然后用ls查看一下:

    ls /dev/nvidia*

    会看到/dev目录下生成多个nvidia开头文件(夹)

    或者输入命令:

    nvcc –version

    会显示cuda版本号则说明安装成功

  11. 配置环境变量

    执行命令: sudo vi /etc/profile

    文件底部添加以下内容:

    export PATH=/usr/local/cuda-7.5/bin:$PATH
    export LD_LIBRARY_PATH=/usr/local/cuda-7.5/lib64:$LD_LIBRARY_PATH
  12. sample编译

    切换到~目录,可以看到当前目录中包含一个文件夹:

    NVIDIA_CUDA-7.5_Samples

    然后cd切换到NVIDIA_CUDA-7.5_Samples的目录下,输入: sudo make

    然后回车执行,大概等个十多分钟后就会把全部的samples编译完毕。

  13. sample演示

    编译完成后,生成可执行文件位于:

    ~/NVIDIA_CUDA-7.5_Samples/bin/x86_64/linux/release 目录下

    eg: 运行 ./nbody 可以看到对应的演示demo

安装CUDA过程中遇到的问题:

  1. 系统版本:ubuntu14.04.4

    在执行命令: sudo apt-get install g++ 的以后出现一下错误:

    g++ : Depends: g++-4.8 (>= 4.8.2-5~) but it is not going to be installed

    出错原因:

    是因为ubuntu 14.04的源过旧或不可访问导致,可以通过更新源解决

  2. 解决方法:

    首先,备份原始源文件source.list

    sudo cp /etc/apt/sources.list /etc/apt/sources.list_backup

    然后并以下添加到/etc/apt/source.list文件末尾


deb http://archive.ubuntu.com/ubuntu/ trusty main restricted universe multiverse
deb http://archive.ubuntu.com/ubuntu/ trusty-security main restricted universe multiverse
deb http://archive.ubuntu.com/ubuntu/ trusty-updates main restricted universe multiverse
deb http://archive.ubuntu.com/ubuntu/ trusty-proposed main restricted universe multiverse
deb http://archive.ubuntu.com/ubuntu/ trusty-backports main restricted universe multiverse
deb-src http://archive.ubuntu.com/ubuntu/ trusty main restricted universe multiverse
deb-src http://archive.ubuntu.com/ubuntu/ trusty-security main restricted universe multiverse
deb-src http://archive.ubuntu.com/ubuntu/ trusty-updates main restricted universe multiverse
deb-src http://archive.ubuntu.com/ubuntu/ trusty-proposed main restricted universe multiverse
deb-src http://archive.ubuntu.com/ubuntu/ trusty-backports main restricted universe multiverse

最后更新ubuntu 源

sudo apt-get update

问题解决参考: 【ubuntu 14.04 install g++问题"g++:Depends:g++-4.8(>= 4.8.2-5




安装caffe

  1. 下载caffe:执行命令: sudo git clone https://github.com/BVLC/caffe.git
  2. 安装依赖项:

    sudo apt-get install libatlas-base-dev

    sudo apt-get install libprotobuf-dev

    sudo apt-get install libleveldb-dev

    sudo apt-get install libsnappy-dev

    sudo apt-get install libopencv-dev

    sudo apt-get install libboost-all-dev

    sudo apt-get install libhdf5-serial-dev

    sudo apt-get install libgflags-dev

    sudo apt-get install libgoogle-glog-dev

    sudo apt-get install liblmdb-dev

    sudo apt-get install protobuf-compiler

  3. 编译caffe

    cd ~/caffe

    sudo cp Makefile.config.example Makefile.config

    make all

  4. 配置运行环境

    sudo vi /etc/ld.so.conf.d/caffe.conf

    添加内容:

    /usr/local/cuda/lib64

  5. 更新配置

    sudo ldconfig

  6. caffe测试,执行以下命令:

    cd ~/caffe

    sudo sh data/mnist/get_mnist.sh

    sudo sh examples/mnist/create_mnist.sh

    最后测试:

    sudo sh examples/mnist/train_lenet.sh




其他安装

## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
# CPU_ONLY := 1

# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#   You should not set this flag if you will be reading LMDBs with any
#   possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you‘re using OpenCV 3
# OPENCV_VERSION := 3

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20         -gencode arch=compute_20,code=sm_21         -gencode arch=compute_30,code=sm_30         -gencode arch=compute_35,code=sm_35         -gencode arch=compute_50,code=sm_50         -gencode arch=compute_50,code=compute_50

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
PYTHON_INCLUDE := /usr/include/python2.7         /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it‘s in root.
# ANACONDA_HOME := $(HOME)/anaconda
# PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
        # $(ANACONDA_HOME)/include/python2.7         # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
# Uncomment to use Python 3 (default is Python 2)
# PYTHON_LIBRARIES := boost_python3 python3.5m
# PYTHON_INCLUDE := /usr/include/python3.5m \
#                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
PYTHON_LIB := /usr/lib
# PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c ‘import numpy.core; print(numpy.core.__file__)‘))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
# USE_PKG_CONFIG := 1

BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that ‘make runtest‘ will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

以上为caffe目录中的Makefile.config.example文件内容,可以看到诸如:

# USE_CUDNN := 1

# OPENCV_VERSION := 3

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas

都没有生效,以下将依次安装对应的依赖项




opencv3.0安装

  1. github上有人写了安装各个版本的opencv脚本,很方便,不用自己下载,编译,配置环境等
  2. 可以到这位作者的百度网盘中下载:

    Caffe + Ubuntu 15.04 + CUDA 7.5 新手安装配置指南

    【PS:为了方便大家使用,我提供一个百度云盘,用于分享部分安装过程中需要用到的软件包和链接地址(所有软件包仅供学术交流使用,请大家尽量去官网下载。)。百度云盘链接: http://pan.baidu.com/s/1qX1uFHa 密码:wysa 】 作者:【Xin-Yu Ou(欧新宇)】

  3. 切换到目录: Install-OpenCV-master\Ubuntu

    执行命令安装依赖项: sudo sh Ubuntu/dependencies.sh

    然后切换到Install-OpenCV-master\Ubuntu\3.0目录

    执行命令安装opencv3.0: sudo sh opencv3_0_0.sh

  4. 现在3.1已经发布了,可以先执行 get_latest_version_download_file获取最新的下载路径,然后更新opencv3_0_0.sh中的下载路径
    arch=$(uname -m)
    if [ "$arch" == "i686" -o "$arch" == "i386" -o "$arch" == "i486" -o "$arch" == "i586" ]; then
    flag=1
    else
    flag=0
    fi
    echo "Installing OpenCV 3.0.0"
    mkdir OpenCV
    cd OpenCV
    echo "Removing any pre-installed ffmpeg and x264"
    sudo apt-get -y remove ffmpeg x264 libx264-dev
    echo "Installing Dependenices"
    sudo apt-get -y install libopencv-dev
    sudo apt-get -y install build-essential checkinstall cmake pkg-config yasm
    sudo apt-get -y install libtiff4-dev libjpeg-dev libjasper-dev
    sudo apt-get -y install libavcodec-dev libavformat-dev libswscale-dev libdc1394-22-dev libxine-dev libgstreamer0.10-dev libgstreamer-plugins-base0.10-dev libv4l-dev
    sudo apt-get -y install python-dev python-numpy
    sudo apt-get -y install libtbb-dev
    sudo apt-get -y install libqt4-dev libgtk2.0-dev
    sudo apt-get -y install libfaac-dev libmp3lame-dev libopencore-amrnb-dev libopencore-amrwb-dev libtheora-dev libvorbis-dev libxvidcore-dev
    sudo apt-get -y install x264 v4l-utils ffmpeg
    sudo apt-get -y install libgtk2.0-dev
    echo "Downloading OpenCV 3.0.0"
    wget -O opencv-3.0.0.zip http://sourceforge.net/projects/opencvlibrary/files/opencv-unix/3.0.0/opencv-3.0.0.zip/download
    echo "Installing OpenCV 3.0.0"
    unzip opencv-3.0.0.zip
    cd opencv-3.0.0
    mkdir build
    cd build
    cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D WITH_V4L=ON -D INSTALL_C_EXAMPLES=ON -D INSTALL_PYTHON_EXAMPLES=ON -D BUILD_EXAMPLES=ON -D WITH_QT=ON -D WITH_OPENGL=ON ..
    make -j8
    sudo make install
    sudo sh -c ‘echo "/usr/local/lib" > /etc/ld.so.conf.d/opencv.conf‘
    sudo ldconfig
    echo "OpenCV 3.0.0 ready to be used"
  5. opencv3安装成功后,更新Makefile.config文件:

    启用OpenCV 3.0, 去掉”#”

    OPENCV_VERSION =3

opencv3.0安装过程遇到的问题

  1. 执行sudo sh opencv3_0_0.sh后,有一步被卡住,显示在下载一个文件:

    ippicv_linux_20141027.tgz

    还是墙的原因

  2. [其他文档] ippicv_linux_20141027.tgz 下载目标文件,然后拷贝到opencv/3rdparty/ippicv/downloads/linux-8b449a536a2157bcad08a2b9f266828b/ 目录下即可
  3. 参见: http://stackoverflow.com/questions/25726768/opencv-3-0-trouble-with-installation



BLAS安装:使用MKL

  1. MKL(Intel(R) Parallel Studio XE Cluster Edition for Linux 2016)

    下载地址: https://software.intel.com/en-us/intel-education-offerings

    (上面那位作者网盘也有,不过序列号无法使用,故需自己申请)

  2. 下载后讲文件放入~目录: parallel_studio_xe_2016.tar.gz
  3. 依次执行以下命令完成安装:

    tar zxvf parallel_studio_xe_2016.tar.gz

    chmod a+x parallel_studio_xe_2016 -R

    sh install_GUI.sh

  4. MKL环境配置:

    sudo gedit /etc/ld.so.conf.d/intel_mkl.conf

    添加以下内容

    /opt/intel/lib/intel64

    /opt/intel/mkl/lib/intel64

    生效

    sudo ldconfig -v

  5. 更新Makefile.config文件

    BLAS := mkl





安装cudnn进行加速

  1. cudnn-7.0-linux-x64-v4.0-rc.tgz下载

    网址: https://developer.nvidia.com/cudnn

    或者去这位作者网盘: http://pan.baidu.com/s/1bnOKBO

  2. 将cudnn-7.0-linux-x64-v4.0-rc.tgz放到~目录
  3. 依次执行以下命令:

    sudo tar xvf cudnn-7.0-linux-x64-v4.0-rc.tgz

    cd cuda/include

    sudo cp *.h /usr/local/include/

    cd ../lib64

    sudo cp lib* /usr/local/lib/

    cd /usr/local/lib

    sudo chmod +r libcudnn.so.4.0.4

    sudo ln -sf libcudnn.so.4.0.4 libcudnn.so.4

    sudo ln -sf libcudnn.so.4 libcudnn.so

    sudo ldconfig

  4. 更新Makefile.config文件 (启用CUDNN,去掉”#” )

    USE_CUDNN := 1






重新编译

  1. j8表示8线程根据自己机器修改,opencv3.0.sh文件中也可以自行修改

sudo make clean

sudo make all -j8



MNIST数据集进行测试

  1. sh data/mnist/get_mnist.sh
  2. sh examples/mnist/create_mnist.sh
  3. sh examples/mnist/train_lenet.sh

    运行结果:



其他: 常用vi编辑器命令行



A:当前行的尾部追加内容

i:游标前插入内容

I:游标后插入内容

o:在鼠标所在行的下面添加内容

O:在鼠标所在行的上面添加内容

ESC:退出编辑模式

Ctrl-T:移动到下一个tab

Backspace:向后移动一个字符

Ctrl-U:删除当前

cw:删除游标所在的字符,然后进入编辑模式

cc:删除游标所在的行,然后进入编辑模式

C:删除从游标所在的位置到行尾的字符,然后进入编辑模式

dd:删除当前行

ndd:删除第n行

D:删除当前行游标所在的位置后面的字符

dw:删除邮编所在的字符

d}:删除当前段剩余的字符

d^:删除游标前到行首的字符

c/pat:删除游标后面到第一次匹配字符间的内容

dn:删除游标后面到下一个匹配字符间的内容

dfa:删除当前行游标到匹配字符间的内容(匹配的字符也将被删)

dta:删除当前行游标到匹配字符间的内容(匹配的字符不被删)

dL:删除从游标到屏幕的最后一行之间的内容

dG:删除从游标到文件末尾之间的内容

J:连结上下两行的内容

p:在游标后面插入buffer中的内容

P:在游标前面插入buffer中的内容

rx:用x替换字符

Rtext:用text从游标开始处进行替换

u:撤销最后的改变

U:还原当前行的内容

x:向后删除游标所在位置的字符

X:向前删除游标前面的字符

nX:删除前面的n个字符,游标所在的字符将不会被删

.:还原最后的改变

~:反转字母的大小写

y:拷贝当前行到新的buffer

yy:拷贝当前行

“xyy:拷贝当前行的buffer名为x的buffer

ye:拷贝当单词的末尾




http://www.cnblogs.com/junw_china/articles/1708967.html






参考文献

Caffe + Ubuntu 15.04 + CUDA 7.5 新手安装配置指南

Caffe学习系列(1):安装配置ubuntu14.04+cuda7.5+caffe+cudnn

http://caffe.berkeleyvision.org/installation.html

ubuntu 14.04 install g++问题"g++:Depends:g++-4.8(>= 4.8.2-5

http://stackoverflow.com/questions/25726768/opencv-3-0-trouble-with-installation

时间: 2024-10-08 10:29:30

Caffe+Ubuntu 14.04.4+CUDA7.5安装的相关文章

Caffe + Ubuntu 14.04 64bit + CUDA 6.5 配置说明

笔者花了很长时间才装完,主要是cuda安装和opencv安装比较费劲,cuda找不到32位的安装包只好重装64位的ubuntu系统,opencv 也是尝试了很久才解决,这里建议用2.4.9版本.其实如果没用GPU的话不需要安装cuda,不过为了后续兼容性的考虑,系统强烈建议64位的.下面是 对自己的安装过程记录备忘,有些主要参考网上的文章,所以有些过程就直接用了原来文章中的内容. caffe在git上的源码:https://github.com/BVLC/caffe 环境:    ubuntu

ubuntu 14.04查看java的安装路径

有时候,使用apt-get install 安装了某个软件之后,却不知道这个软件的安装路径在哪里. 那怎么样去找出这个软件的安装路径呢? 下面我们java 这个软件为例, 找出ubuntu 14.04 上面java的安装路径. 1. 首先 java -version , 输出信息显示确实已经安装了java 2. whereis java , 输出信息看出路径在哪里 3. ls -l /usr/bin/java 看看这是否是个软连接,找出这个软连接指向的路径即可 发现输出的信息,显示还是个软连接,

在阿里云Ubuntu 14.04 Linux服务器上安装docker

参考 How To Install and Use Docker: Getting Started 这篇最靠谱的文档在阿里云 Ubuntu  14.04 服务器上成功安装 docker . 1)更新 apt 的安装包列表 sudo apt-get update 2)升级所有已安装的包 sudo apt-get -y upgrade 3)添加 apt 验证密钥 sudo apt-key adv --keyserver hkp://pgp.mit.edu:80 --recv-keys 58118E8

ubuntu 14.04下ACE的安装

1. 从 ACE 官网(http://download.dre.vanderbilt.edu/)下载 ACE+TAO+CIAO-6.2.7.tar.bz2,放在/home/yourname; 用 tar xvjf ACE+TAO+CIAO-6.1.2.tar.bz2 解压得到 /home/yourname/ACE_wrappers su 到 root 账户下 2. 设置环境变量: ACE_ROOT=/home/yourname/ACE_wrappers; export ACE_ROOT 备注: 

Caffe + Ubuntu 14.04 + CUDA 6.5 新手安装配置指南

洋洋洒洒一大篇,就没截图了,这几天一直在折腾这个东西,实在没办法,不想用Linux但是,为了Caffe,只能如此了,安装这些东西,遇到很多问题,每个问题都要折磨很久,大概第一次就是这样的.想想,之后应用,应该还会遇到很多问题吧,不过没办法了,骑虎难下!!这里有个建议是,如果将来要做大数据集,最好事先给Linux留多点空间,比如Imagenet,估计500G都不为过.另外,请阅读完,至少一个部分再进行动手操作,避免多余的工作,写作能力有限,尽请见谅.        这篇安装指南,适合零基础,新手操

Caffe在Ubuntu 14.04 64bit 下的安装

最近因为各种原因,装过不少次Caffe,安装过程很多坑,为节省新手的时间,特此总结整个安装流程. 关于Ubuntu 版本的选择,建议用14.04这个比较稳定的版本,但是千万不要用麒麟版!!!比原版体验要差很多!!! Caffe的安装过程,基本采纳 这篇文章 然后稍作改动,跳过大坑. 1. 安装开发依赖包 sudo apt-get install build-essential sudo apt-get install vim cmake git sudo apt-get install libp

[Linux 小技巧] Ubuntu 14.04 下编译、安装、配置最新开发版 GoldenDict

1. 背景介绍 GoldenDict 是一款非常优秀的跨平台电子词典软件,支持 StarDict.Babylon 等多种词典.其 PC 版基于 Qt 编写,完全免费.开源且没有广告.GoldenDict 的 Android 版是另外一个全新实现的系统,采用了付费版去广告.免费版显示广告的策略,这里就不详细讨论了. GoldenDict 在 GitHub 上的地址是 https://github.com/goldendict/goldendict,截至目前(2015-10-17)已经有 1872

Ubuntu 14.04 LTS中怎样安装fcitx中文输入法

Ubuntu 14.04 LTS中自带的iBus输入法有多么的难用,这个不用我来说,今后你会看到各种吐嘈会像滔滔江水连绵不绝的.这里我们不抱怨,我们自己来着手解决中国人自 己的Linux中文输入法问题.Fcitx是当之无愧的最好的中文输入法(框架),真的非常感谢作者——当然是中国人,不然谁给你写这头痛的东西.当 Linux走进平常百姓家的时候,我确信Fcitx的贡献起码也得有好几个百分点呀! 方法/步骤 1 一,安装fcitx,这么好的软件,ubuntu软件中心肯定是找得到的,但还是命令来得快一

Ubuntu 14.04中文输入法的安装

Ubuntu默认自带的中文输入法是IBUS框架的ibus-pinyin,IBUS-Bopomofo等.对于习惯于搜狗,紫光华宇,谷歌拼音的我们可能有点使用不习惯.下面就是安装常用的IBUS中文输入法. 1,安装IBUS-googlepinyin,ibus-sunpinyin. 直接在Ubuntu软件中心搜索IBUS,然后选择显示不常用项,即如下找到相应的输入法. 如果除了系统自带的IBUS输入法框架,你还安装了Fcitx等输入法框架,那需要在系统设置→语言支持项目设定"键盘输入方式系统"