【BZOJ 2820】YY的GCD

线性筛积性函数$g(x)$,具体看Yveh的题解:

http://sr16.com:8081/%e3%80%90bzoj2820%e3%80%91yy%e7%9a%84gcd/

#include<cstdio>
#include<cstring>
#include<algorithm>
#define read(x) x=getint()
using namespace std;
const int N = 1E7 + 3;
int getint() {
	int k = 0, fh = 1; char c = getchar();
	for(; c < ‘0‘ || c > ‘9‘; c = getchar())
		if (c == ‘-‘) fh = -1;
	for(; c >= ‘0‘ && c <= ‘9‘; c = getchar())
		k = k * 10 + c - ‘0‘;
	return k * fh;
}
bool np[N];
int g[N], mu[N], prime[N], sum[N];
void shai() {
	memset(np, 0, sizeof(np));
	mu[1] = 1; g[1] = 0; sum[1] = 0; int num = 0;
	for(int i = 2; i <= 1E7; ++i) {
		if (!np[i]) {prime[++num] = i; mu[i] = - 1; g[i] = 1;}
		for(int j = 1; j <= num; ++j) {
			if (prime[j] * i > 1E7) break;
			np[prime[j] * i] = 1;
			if (i % prime[j] == 0) {
				mu[prime[j] * i] = 0;
				g[prime[j] * i] = mu[i];
				break;
			}
			mu[prime[j] * i] = - mu[i];
			g[prime[j] * i] = mu[i] - g[i];
		}
		sum[i] = sum[i - 1] + g[i];
	}
}
int main() {
	shai();
	long long ret;
	int t, n, m;
	read(t);
	while (t--) {
		read(n); read(m);
		if (n > m) swap(n, m);
		ret = 0;
		for(int i = 1, la = 1; i <= n; i = la + 1) {
			la = min(n / (n / i), m / (m / i));
			ret += (long long) (sum[la] - sum[i - 1]) * (n / i) * (m / i);
		}
		printf("%lld\n", ret);
	}
	return 0;
}

我确实弱==

时间: 2025-01-02 08:38:12

【BZOJ 2820】YY的GCD的相关文章

bzoj 2820: YY的GCD

2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必然不会了,于是向你来请教……多组输入 Input 第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M Output T行,每行一个整数表示第i组数据的结果 Sample Input

BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discuss] Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必然不会了,于是向你来请教……多组输入 Input 第一行一个整数T 表述数据组数接下来T行,每行两个正

【刷题】BZOJ 2820 YY的GCD

Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必然不会了,于是向你来请教……多组输入 Input 第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M Output T行,每行一个整数表示第i组数据的结果 Sample Input 2 10 10 100 100 Sample Output 30 2791 HINT T = 10000 N

bzoj 2820 YY的GCD 莫比乌斯反演

题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性筛的时候只考虑当前的数最小因子,如果进来的最小因子不存在,相当于在之前那个数的基础上的每个mu值都多加了一个质数,那么 这些mu值就要取反,如果已经包含了这个最小因子,我这里另外进行了跟之前类似的讨论方法,在代码中写着 因为这题目数据比较大,这里求解的时候不应该线性求,因为总是有一段区间的n/i*(m/i)值

BZOJ 2820 YY的GCD ——莫比乌斯反演

我们可以枚举每一个质数,那么答案就是 $\sum_{p}\sum_{d<=n}\mu(d)*\lfloor n / pd \rfloor *\lfloor m / pd \rfloor$ 直接做?TLE 考虑优化,由于看到了pd是成对出现的,令T=pd $ans=\sum_{T<=min(n,m)}\lfloor n / T \rfloor *\lfloor m / T \rfloor \sum_{p \mid T}\mu(T/p)$ 或者 $ans=\sum_{T<=min(n,m)}

BZOJ 2820: YY的GCD | 数论

题目: 题解: #include<cstdio> #include<algorithm> #define N 10000005 typedef long long ll; using namespace std; int T,n,m,cnt; bool mark[N]; int pri[N],mu[N]; ll f[N]; void getphi() { mu[1]=1; for (int i=2;i<N;i++) { if (!mark[i]) pri[++cnt]=i,m

【BZOJ】2820: YY的GCD(莫比乌斯)

http://www.lydsy.com/JudgeOnline/problem.php?id=2820 此题非常神! 下文中均默认n<m 首先根据bzoj1101的推理,我们易得对于一个数d使得数对(x,y)=k的个数为: $$\sum_{1<=d<=n'} \mu (d) \times \lfloor \frac{n}{d} \rfloor \times \lfloor \frac{m}{d} \rfloor, 其中n'=\lfoor \frac{n}{k} \rfloor$$ 所以

【BZOJ 2820】 YY的GCD

2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 807  Solved: 404 [Submit][Status] Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 kAc这种傻×必然不会了,于是向你来请教-- 多组输入 Input 第一行一个整数T 表述数据组数 接下来T行,每行两个正整数,表示

【BZOJ】【2820】YY的GCD

莫比乌斯反演 PoPoQQQ讲义第二题. 暴力枚举每个质数,然后去更新它的倍数即可,那个g[x]看不懂就算了…… 为什么去掉了一个memset就不T了→_→…… 1 /************************************************************** 2 Problem: 2820 3 User: Tunix 4 Language: C++ 5 Result: Accepted 6 Time:4368 ms 7 Memory:167304 kb 8 **

【BZOJ 2820】 YY的GCD (莫比乌斯+分块)

YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 kAc这种傻×必然不会了,于是向你来请教…… 多组输入 Input 第一行一个整数T 表述数据组数 接下来T行,每行两个正整数,表示N, M Output T行,每行一个整数表示第i组数据的结果 Sample Input 210 10100 100 Sample Output 302791 Hint T =