RGB-D 室内导航 paper

摘要:

最近打算使用Kinect实现机器人的室内导航,收集了近年来的一些比较好的文章。《基于Kinect系统的场景建模与机器人自主导航》、《Mobile Robots Navigation in Indoor Environments Using Kinect》、《Using a Depth Camera for Indoor Robot Localization and Navigation》、《Depth Camera Based Indoor Mobile Robot Localization and Navigation》、《Using a Depth Camera for Indoor Robot Localization and Navigation》、《Using the Kinect as a Navigation Sensor for Mobile Robotics》。

by Top Liu
最近打算使用Kinect实现机器人的室内导航,收集了近年来的一些比较好的文章。

基于Kinect系统的场景建模与机器人自主导航

《机器人》 2012年05

杨东方  王仕成  刘华平  刘志国  孙富春

【摘要】:本文分别基于微软Kinect系统的单目RGB摄像机以及深度距离受限的RGB-D像机,研究解决室内机器人的6自由度定位问题.首先,在传统不完全自由度估计的基础上,提出了特征点参数的增量式模型以解决运动尺度不确定性问题.该模型和以往的欧几里得、逆深度参数化模型相比,不仅能够显著降低系统状态维数,而且能够保证系统状态的一致可观测性;此外,基于增量式模型,根据Kinect系统中采集的RGB图像和红外图像,实现了对机器人6自由度的运动估计.最后,将Kinect系统采集得到的RGB图像和深度图像序列用于欧几里得参数化模型和增量式参数化模型,对应的实验结果证明了本文所提的自主导航方法的有效性.

下载:http://robot.sia.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=15382

国外文献:

1.Mobile Robots Navigation in Indoor Environments Using Kinect

This paper appears in:
Critical Embedded Systems (CBSEC), 2012 Second Brazilian

没了方便没有IEEE账户的朋友,我已上传到百度文库。下面的文章可直接点击下载

2.Using a Depth Camera for Indoor Robot Localization and Navigation

Abstract—Depth cameras are a rich source of information for
robot indoor localization and safe navigation. The recent availability
of the low-cost Kinect sensor provides a valid alternative
to other available sensors, namely laser-range finders. This
paper presents the first results of the application of a Kinect
sensor on a wheeled indoor service robot for elderly assistance.
The robot makes use of a metric map of the environment’s
walls and uses the depth information of the Kinect camera to
detect the walls and localize itself in the environment. In our
approach an error minimization method is used providing realtime
efficient robot pose estimation. Furthermore, the depth
camera provides information about the obstacles surrounding
the robot, allowing the application of path-finding algorithms
such as D* Lite achieving safe and robust navigation. Using
the proposed solution, we were able to adapt a robotic soccer
robot developed at the University of Aveiro to successfully
navigate in a domestic environment, across different rooms
without colliding with obstacles in the environment.

3.Depth Camera Based Indoor Mobile Robot Localization and Navigation

Abstract—The sheer volume of data generated by depth
cameras provides a challenge to process in real time, in
particular when used for indoor mobile robot localization and
navigation. We introduce the Fast Sampling Plane Filtering
(FSPF) algorithm to reduce the volume of the 3D point cloud
by sampling points from the depth image, and classifying local
grouped sets of points as belonging to planes in 3D (the “plane
filtered” points) or points that do not correspond to planes
within a specified error margin (the “outlier” points). We then
introduce a localization algorithm based on an observation
model that down-projects the plane filtered points on to 2D, and
assigns correspondences for each point to lines in the 2D map.
The full sampled point cloud (consisting of both plane filtered
as well as outlier points) is processed for obstacle avoidance
for autonomous navigation. All our algorithms process only
the depth information, and do not require additional RGB
data. The FSPF, localization and obstacle avoidance algorithms
run in real time at full camera frame rates (30Hz) with low
CPU requirements (16%). We provide experimental results
demonstrating the effectiveness of our approach for indoor
mobile robot localization and navigation. We further compare
the accuracy and robustness in localization using depth cameras
with FSPF vs. alternative approaches that simulate laser
rangefinder scans from the 3D data.

4.Using a Depth Camera for Indoor Robot Localization and Navigation

Abstract—Depth cameras are a rich source of information for
robot indoor localization and safe navigation. The recent availability
of the low-cost Kinect sensor provides a valid alternative
to other available sensors, namely laser-range finders. This
paper presents the first results of the application of a Kinect
sensor on a wheeled indoor service robot for elderly assistance.
The robot makes use of a metric map of the environment’s
walls and uses the depth information of the Kinect camera to
detect the walls and localize itself in the environment. In our
approach an error minimization method is used providing realtime
efficient robot pose estimation. Furthermore, the depth
camera provides information about the obstacles surrounding
the robot, allowing the application of path-finding algorithms
such as D* Lite achieving safe and robust navigation. Using
the proposed solution, we were able to adapt a robotic soccer
robot developed at the University of Aveiro to successfully
navigate in a domestic environment, across different rooms
without colliding with obstacles in the environment.

5.Using the Kinect as a Navigation Sensor for Mobile Robotics

ABSTRACT
Localisation and mapping are the key requirements in mobile
robotics to accomplish navigation. Frequently laser scanners
are used, but they are expensive and only provide 2D mapping
capabilities. In this paper we investigate the suitability
of the Xbox Kinect optical sensor for navigation and simultaneous
localisation and mapping. We present a prototype
which uses the Kinect to capture 3D point cloud data of the
external environment. The data is used in a 3D SLAM to
create 3D models of the environment and localise the robot
in the environment. By projecting the 3D point cloud into
a 2D plane, we then use the Kinect sensor data for a 2D
SLAM algorithm. We compare the performance of Kinectbased
2D and 3D SLAM algorithm with traditional solutions
and show that the use of the Kinect sensor is viable. However,
its smaller field of view and depth range and the higher
processing requirements for the resulting sensor data limit its
range of applications in practice.

Mobile Autonomous Robot using the Kinect

国外一个project

时间: 2024-10-06 00:38:32

RGB-D 室内导航 paper的相关文章

室内导航开发笔记

IndoorAtlas室内导航iOS版使用方法: 引入协议  IALocationManagerDelegate 实现方法 - (void)indoorLocationManager:(IALocationManager *)manager didUpdateLocations:(NSArray *)locations; - (void)indoorLocationManager:(IALocationManager *)manager didEnterRegion:(IARegion *)re

技术杂谈 之 室内导航

这两年AI很火热,各种无人驾驶.机器人.无人机层出不穷,新零售也是AI的一个很热的方向.AI与新零售的结合现在也有不少案例了,比如京东X无人超市.超嗨的智能购物车等等.在大型百货商场或者超市,有一个很典型的场景就是室内导航,比如查询一个你不知道具体位置的品牌店铺.寻找一个不知道摆放在哪的商品.本篇就粗略的介绍一下这种室内导航所涉及的技术. 背景 在说室内导航之前,先来聊聊室外导航技术那些事.室外的导航现在已经用的很广泛了,各种汽车导航.XX地图.位置共享服务等等.主要使用的技术就是GNSS,Gl

精准时间同步应用于物联网:室内导航

物联网(Internet of Things)基于计算机互联网,以传统电信网为信息承载体,利用传感器.射频识别(RFID)技术.全球定位系统.红外感应器.激光扫描器.气体感应器等各种装置与技术,让物体(商品)与网络相连,实时采集任何需要信息交换.定位.跟踪.监管.连接.互动的物体或过程的声.光.热.电.力学.化学.生物.位置等各种所需信息,试图构造一个万事万物相连的网络.在这个网络中,无需人为干预,物品(商品)之间能够自动识别与彼此 "交流",从而实现信息互联互通.全面共享.图1 当前

UE4 Navmesh 室内导航设置

我用的UE版本是4.14.1   系统:win10 64 前不久给样板房里面做了一个扫地机器人,导航设置让我头大了很久,度娘也没有用,最后在谷哥上有所感悟,现在给出本人的设置过程和解决方案. 一开始拖了个NavMeshBoundsVolume到样板房里面,按键盘 p 查看可导航区域一看傻眼了,如下图 一看就傻眼了,绿色区域这么少几乎不可导航,想到<Unreal.Engine.4.AI.Programming>上好像有navmesh相关设置介绍,去看了也只是简单的 介绍,自己也设置了一下参数 选

基于WebGL(ThingJS)的平面图导航,室内导航,3D聚焦 (二)

前言 基于WebGL架构的3D可视化平台-平面图导航(一)中已经完成了iframe面板与我们的3D场景的简单交互,下面我们继续完善并给iframe页加上鼠标悬停事件让iframe页的img标签和我们场景中的obj一起动起来. 实现 第一步,还是使用之前的场景接着上次的继续,先编写iframe页.给每一个img标签都加上onmouseover.onmouseout 事件. <!DOCTYPE html> <html lang="en"> <head>

如何构建高精度室内定位系统

高精度室内定位需要的技术 室内GIS展示 室内导航技术 高精度定位传感器 高精度定位算法 平面gis 的三维转换技术 6.  平台网络管理 这里的关键是高精度定位传感技术. 可定位的方式gps,北斗gps,蓝牙,空间定位算法

好好说一说室内定位技术

室内定位技术进过了几十年的发展,从未像今天这样引起大家的关注,这无疑得益于VR技术在这几年的蓬勃发展,52VR的编辑们今天就梳理下已有的定位技术和手段,有哪些点值得我们参考和注意呢? 那么传统的室内定位技术有哪些呢? 室内无线定位技术可以这样分成三类: 近邻法 三边(角)测量法 模式匹配法. 近邻法: 最简单的方式,直接选定那个信号强度最大的AP的位置.纠正一个很容易被误导的地方,目前大多数手机中的定位方式为(GPS/AGPS.基站定 位.WiFi定位),这里的WiFi定位并不是位置指纹法,而是

总结关于iOS室内定位开发踩过的一些坑。。。

直接正题,没得BB 首先说明一下室内定位从架构上严格来讲分为3步: 1.室内地图以及室内地图能相关的一些成熟API 2.以任意方式来获取室内定位的坐标 3.将室内定位的坐标转化成室内地图的API或者一种能兼容两者的转换方式 (可选)4.定位稳定性的滤波处理,试定位坐标点不出现 跳点.卡顿.掉帧.北偏角指向性错误等影响用户体验的处理方案 目前市场中室内定位资源比较散乱,主要分为地图供应商和定位服务商两种,也有将室内定位资源合并的企业,比如 某石科技 所以要是想对室内定位有研究的最好还是需要多方了解

地图导航攻坚战:公交导航

用了这么久的手机地图,终于有针对普通用户的公交导航服务了.不知道各大图商是之前技术不达标,还是没想清楚手机地图的本质.用户下载手机地图为的是什么?为好玩?肯定不是,为O2O消费?更不是,用户的需求是用地图APP帮助认路,这才是地图APP的存在价值. 地图APP价值需要获得提升 不能提供公交导航服务的地图APP都是耍流氓,用户什么时候用地图APP最为频繁?肯定是在制定出行路线或者临时去一个陌生地的时候,这时最需要地图APP提供通过公共交通到达目的地的解决方案,主要以公交.地铁.步行为主,出租车为辅