题目链接:BZOJ - 3196
题目分析
区间Kth和区间Rank用树状数组套线段树实现,区间前驱后继用线段树套set实现。
为了节省空间,需要离线,先离散化,这样需要的数组大小可以小一些,可以卡过128MB = =
嗯就是这样,代码长度= =我写了260行......Debug了n小时= =
代码
#include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <algorithm> #include <set> #include <map> using namespace std; const int MaxN = 50000 + 5, MaxM = 50000 + 5, MN = 100000 + 15, INF = 999999999, MaxNode = 8000000 + 15; int n, m, Index, Used_Index, Top, Hash_Index; int A[MaxN], Root[MaxN], T[MaxNode], Son[MaxNode][2], U[MaxN], C[MaxN], Que[MaxN + MaxM], TR[MaxN + MaxM]; struct Query { int f, L, R, k, Num, Pos; } Q[MaxM]; map<int, int> M; multiset<int> S[MaxN * 4]; multiset<int>::iterator It; inline int gmin(int a, int b) {return a < b ? a : b;} inline int gmax(int a, int b) {return a > b ? a : b;} void Add(int &x, int s, int t, int Pos, int Num) { if (x == 0) x = ++Index; T[x] += Num; if (s == t) return; int m = (s + t) >> 1; if (Pos <= m) Add(Son[x][0], s, m, Pos, Num); else Add(Son[x][1], m + 1, t, Pos, Num); } void Change(int x, int Pos, int Num) { for (int i = x; i <= n; i += i & -i) Add(Root[i], 0, MN, Pos, Num); } void Add_S(int x, int s, int t, int Pos, int Num) { S[x].insert(Num); if (s == t) return; int m = (s + t) >> 1; if (Pos <= m) Add_S(x << 1, s, m, Pos, Num); else Add_S(x << 1 | 1, m + 1, t, Pos, Num); } void Del_S(int x, int s, int t, int Pos, int Num) { S[x].erase(S[x].find(Num)); if (s == t) return; int m = (s + t) >> 1; if (Pos <= m) Del_S(x << 1, s, m, Pos, Num); else Del_S(x << 1 | 1, m + 1, t, Pos, Num); } void Init_U(int x) { for (int i = x; i; i -= i & -i) U[i] = Root[i]; } void Turn(int x, int f) { for (int i = x; i; i -= i & -i) { if (C[i] == Used_Index) break; C[i] = Used_Index; U[i] = Son[U[i]][f]; } } int Get_LSum(int x) { int ret = 0; for (int i = x; i; i -= i & -i) ret += T[Son[U[i]][0]]; return ret; } int Before(int x, int s, int t, int l, int r, int Num) { int ret; if (l <= s && r >= t) { It = S[x].end(); It--; if (*It < Num) return *It; It = S[x].begin(); if (*It >= Num) return -INF; It = S[x].lower_bound(Num); It--; return *It; } int m = (s + t) >> 1; ret = -INF; if (l <= m) ret = gmax(ret, Before(x << 1, s, m, l, r, Num)); if (r >= m + 1) ret = gmax(ret, Before(x << 1 | 1, m + 1, t, l, r, Num)); return ret; } int After(int x, int s, int t, int l, int r, int Num) { int ret; if (l <= s && r >= t) { It = S[x].upper_bound(Num); if (It == S[x].end()) return INF; else return *It; } int m = (s + t) >> 1; ret = INF; if (l <= m) ret = gmin(ret, After(x << 1, s, m, l, r, Num)); if (r >= m + 1) ret = gmin(ret, After(x << 1 | 1, m + 1, t, l, r, Num)); return ret; } int main() { scanf("%d%d", &n, &m); Top = 0; Index = 0; for (int i = 1; i <= n; ++i) { scanf("%d", &A[i]); Que[++Top] = A[i]; } for (int i = 1; i <= m; ++i) { scanf("%d", &Q[i].f); switch (Q[i].f) { case 1 : scanf("%d%d%d", &Q[i].L, &Q[i].R, &Q[i].Num); break; case 2 : scanf("%d%d%d", &Q[i].L, &Q[i].R, &Q[i].k); break; case 3 : scanf("%d%d", &Q[i].Pos, &Q[i].Num); break; case 4 : scanf("%d%d%d", &Q[i].L, &Q[i].R, &Q[i].Num); break; case 5 : scanf("%d%d%d", &Q[i].L, &Q[i].R, &Q[i].Num); break; } if (Q[i].f != 2) Que[++Top] = Q[i].Num; } sort(Que + 1, Que + Top + 1); Hash_Index = 0; for (int i = 1; i <= Top; ++i) { if (i > 1 && Que[i] == Que[i - 1]) continue; M[Que[i]] = ++Hash_Index; TR[Hash_Index] = Que[i]; } for (int i = 1; i <= n; ++i) { A[i] = M[A[i]]; Change(i, A[i], 1); Add_S(1, 1, n, i, A[i]); } int L, R, Pos, Num, k, Temp, l, r, mid; for (int i = 1; i <= m; ++i) { if (Q[i].f != 2) Q[i].Num = M[Q[i].Num]; switch (Q[i].f) { case 1 : L = Q[i].L; R = Q[i].R; Num = Q[i].Num; Used_Index = 0; Init_U(L - 1); Init_U(R); Temp = 0; l = 0; r = MN; while (l < r) { ++Used_Index; mid = (l + r) >> 1; if (Num <= mid) { r = mid; Turn(L - 1, 0); Turn(R, 0); } else { Temp += Get_LSum(R) - Get_LSum(L - 1); l = mid + 1; Turn(L - 1, 1); Turn(R, 1); } } printf("%d\n", Temp + 1); break; case 2 : L = Q[i].L; R = Q[i].R; k = Q[i].k; Init_U(L - 1); Init_U(R); Used_Index = 0; Temp = 0; l = 0; r = MN; while (l < r) { ++Used_Index; mid = (l + r) >> 1; Temp = Get_LSum(R) - Get_LSum(L - 1); if (Temp >= k) { r = mid; Turn(L - 1, 0); Turn(R, 0); } else { l = mid + 1; Turn(L - 1, 1); Turn(R, 1); k -= Temp; } } printf("%d\n", TR[l]); break; case 3 : Pos = Q[i].Pos; Num = Q[i].Num; Change(Pos, A[Pos], -1); Del_S(1, 1, n, Pos, A[Pos]); A[Pos] = Num; Change(Pos, Num, 1); Add_S(1, 1, n, Pos, Num); break; case 4 : L = Q[i].L; R = Q[i].R; Num = Q[i].Num; printf("%d\n", TR[Before(1, 1, n, L, R, Num)]); break; case 5 : L = Q[i].L; R = Q[i].R; Num = Q[i].Num; printf("%d\n", TR[After(1, 1, n, L, R, Num)]); break; } } return 0; }
时间: 2024-12-26 15:43:10