Fibonacci--poj3070(矩阵快速幂)

http://poj.org/problem?id=3070

Description

In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

An alternative formula for the Fibonacci sequence is

.

Given an integer n, your goal is to compute the last 4 digits of Fn.

Input

The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

Output

For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

Sample Input

0
9
999999999
1000000000
-1

Sample Output

0
34
626
6875

Hint

As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

.

Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

.

这道题就是快速幂http://blog.csdn.net/u013795055/article/details/38599321

还有矩阵相乘

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdlib.h>
#include <vector>
#include <queue>

using namespace std;
#define memset(a,b) memset(a,b,sizeof(a))
#define N 4
#define INF 0xfffffff
struct node
{
    int a[N][N];
}e;

node mm(node p,node q)
{
    node t;
    for(int i=0;i<2;i++)
    {
        for(int j=0;j<2;j++)
        {
            t.a[i][j]=0;
            for(int k=0;k<2;k++)
            {
                t.a[i][j]=(t.a[i][j]+(p.a[i][k]*q.a[k][j]))%10000;
            }
        }
    }
    return t;
}

node mul(node p,int n)
{

    node q;
    for(int i=0;i<2;i++)
    {
        for(int j=0;j<2;j++)
        {
            q.a[i][j]=(i==j);
        }
    }///这个是为了当n是奇数是第一次跟q相乘是还是原来的p,为了下一次跟下一奇数相乘
    while(n)
    {
        if(n&1)
           q=mm(q,p);
        n=n/2;
        p=mm(p,p);
    }
    return q;
}
int main()
{
    int n;
    while(scanf("%d",&n),n!=-1)
    {
        e.a[0][0]=1;
        e.a[0][1]=1;
        e.a[1][0]=1;
        e.a[1][1]=0;
        node b=mul(e,n);
        printf("%d\n",b.a[0][1]);
    }
    return 0;
}
时间: 2024-10-16 15:43:27

Fibonacci--poj3070(矩阵快速幂)的相关文章

HDU - 1588 Gauss Fibonacci (矩阵快速幂+二分求等比数列和)

Description Without expecting, Angel replied quickly.She says: "I'v heard that you'r a very clever boy. So if you wanna me be your GF, you should solve the problem called GF~. " How good an opportunity that Gardon can not give up! The "Prob

hdu 1588 Gauss Fibonacci(矩阵快速幂)

Gauss Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2090    Accepted Submission(s): 903 Problem Description Without expecting, Angel replied quickly.She says: "I'v heard that you'r

HDU 1588 Gauss Fibonacci(矩阵快速幂+二分等比序列求和)

HDU 1588 Gauss Fibonacci(矩阵快速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出k,b,n,M,问( f(g(0)) + f(g(1)) + ... + f(g(n)) ) % M的值. 分析: 把斐波那契的矩阵带进去,会发现这个是个等比序列. 推倒: S(g(i)) = F(b) + F(b+k) + F(b+2k) + .... + F(b+nk) // 设 A = {1,1,

POJ 3070 Fibonacci(矩阵快速幂)

题目链接 题意 : 用矩阵相乘求斐波那契数的后四位. 思路 :基本上纯矩阵快速幂. 1 //3070 2 #include <iostream> 3 #include <cstring> 4 #include <cstdio> 5 6 using namespace std; 7 8 struct Matrix 9 { 10 int v[2][2]; 11 }; 12 int n; 13 14 Matrix matrix_mul(Matrix a,Matrix b) 1

【POJ 3070】Fibonacci(矩阵快速幂)

[POJ 3070]Fibonacci(矩阵快速幂) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12333   Accepted: 8752 Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn ? 1 + Fn ? 2 for n ≥ 2. For example, the first ten terms of the

POJ3070 Fibonacci【矩阵快速幂】

Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 20098 Accepted: 13850 Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn ? 1 + Fn ? 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence a

POJ3070 Fibonacci(矩阵快速幂)

用矩阵快速幂求fibonacci序列的第n项. /* *********************************************** Author :devil Created Time :2016/1/19 20:11:43 ************************************************ */ #include <iostream> #include <algorithm> #include <cstring> #in

POJ3070——矩阵快速幂——Fibonacci

Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, … An alternative formula for the Fibonacci sequence is

UVA - 10229 - Modular Fibonacci (矩阵快速幂 + fibonacci)

题目传送:UVA - 10229 思路:就是简单的矩阵快速幂求fibonacci数列,然后注意可能中间结果会爆int,因为2^19有50多万 AC代码: #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <cmath> #include <queue> #include <stack> #includ

POJ 3070 Fibonacci(矩阵快速幂模板)

Description: In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, … An alternative formula for the Fibonacci sequence i