洛谷P1755 斐波那契的拆分

题目背景

题目描述

已知任意一个正整数都可以拆分为若干个斐波纳契数,现在,让你求出n的拆分方法

输入输出格式

输入格式:

一个数t,表示有t组数据

接下来t行,每行一个数n(如题)

输出格式:

t行,每行一个字符串,表示拆分方法(格式:n=a1+a2+a3+..+an),要求从小到大输出

输入输出样例

输入样例#1:

input1:1
       1
input2:1
       10

输出样例#1:

output1:1=1
output2:10=2+8

说明

若有多组数据,以个数最小的为准,若仍有多组,输出右边尽量大的一组

对于100%的数据 t<=1000 1<=n<=10^9

小小DFS

 1 /*By SilverN*/
 2 #include<iostream>
 3 #include<cstdio>
 4 #include<cmath>
 5 #include<cstring>
 6 #include<algorithm>
 7 #define LL long long
 8 using namespace std;
 9 int read(){
10     int x=0,f=1;char ch=getchar();
11     while(ch<‘0‘ || ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();}
12     while(ch>=‘0‘ && ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();}
13     return x*f;
14 }
15 int T;
16 int n;
17 int a[50];
18 bool DFS(int pos,int res,bool flag){
19     if(res==n){return 1;}
20     if(!pos)return 0;
21     for(int i=pos;i;i--){
22         if(res+a[i]>n)continue;
23         if(DFS(i-1,res+a[i],0)){
24             if(flag)printf("%d\n",a[i]);
25             else printf("%d+",a[i]);
26             return 1;
27         }
28     }
29     return 0;
30 }
31 int main(){
32     int i,j;
33     scanf("%d",&T);
34     a[1]=1;a[2]=1;
35     for(i=3;i<46;i++){
36         a[i]=a[i-1]+a[i-2];
37 //        printf("%d\n",a[i]);
38     }
39     while(T--){
40         scanf("%d",&n);
41         printf("%d=",n);
42         DFS(45,0,1);
43     }
44     return 0;
45 }
时间: 2024-10-26 17:48:13

洛谷P1755 斐波那契的拆分的相关文章

洛谷P3938 斐波那契

题目戳 题目描述 小 C 养了一些很可爱的兔子. 有一天,小 C 突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行 繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子.我们假定, 在整个过程中兔子不会出现任何意外. 小 C 把兔子按出生顺序,把兔子们从 1 开始标号,并且小 C 的兔子都是 1 号兔子和 1 号兔子的后代.如果某两对兔子是同时出生的,那么小 C 会将父母标号更小的一对优先标 号. 如果我们把这种关系用图画下来,前六个月大概就是这样的: 其中,一个

洛谷P1306 斐波那契公约数

P1306 斐波那契公约数 题目描述 对于Fibonacci数列:1,1,2,3,5,8,13......大家应该很熟悉吧~~~但是现在有一个很“简单”问题:第n项和第m项的最大公约数是多少? 输入输出格式 输入格式: 两个正整数n和m.(n,m<=10^9) 注意:数据很大 输出格式: Fn和Fm的最大公约数. 由于看了大数字就头晕,所以只要输出最后的8位数字就可以了. 输入输出样例 输入样例#1: 4 7 输出样例#1: 1 说明 用递归&递推会超时 用通项公式也会超时 /* 首先,斐波

洛谷P1962 斐波那契数列

P1962 斐波那契数列 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请你求出 f(n) mod 1000000007 的值. 输入输出格式 输入格式: ·第 1 行:一个整数 n 输出格式: 第 1 行: f(n) mod 1000000007 的值 输入输出样例 输入样例#1: 5 输出样例#1: 5 输入样例#2: 10 输出样例#2:

[洛谷1962]斐波那契数列

思路: 常见算法时矩阵快速幂,但事实上这题可以不需要矩阵快速幂. 设斐波那契数列为$f$,观察规律可以发现: 当$n$为偶数时,$f_n=(f_{n-1}\times 2+f_n)\times f_n$: 当$m$为奇数时,$f_n=f_{n+1}^2+f_n^2$. 这样只要用一个map记录已经计算过的Fibonacci数,递归求得答案即可. 再用一个hash_map跑得和标算一样快(0ms),而且内存更小. 1 #include<cstdio> 2 #include<ext/hash

洛谷 P2626 斐波那契数列(升级版)

题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 请你求出第n个斐波那契数列的数mod(或%)2^31之后的值.并把它分解质因数. 输入输出格式 输入格式: n 输出格式: 把第n个斐波那契数列的数分解质因数. 输入输出样例 输入样例#1: 5 输出样例#1: 5=5 输入样例#2: 6 输出样例#2: 8=2*2*2 说明 n<=48 质因数分解

洛谷—— P1962 斐波那契数列

https://www.luogu.org/problem/show?pid=1962 题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请你求出 f(n) mod 1000000007 的值. 输入输出格式 输入格式: ·第 1 行:一个整数 n 输出格式: 第 1 行: f(n) mod 1000000007 的值 输入输出样例 输入样例#1:

洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请你求出 f(n) mod 1000000007 的值. 输入输出格式 输入格式: ·第 1 行:一个整数 n 输出格式: 第 1 行: f(n) mod 1000000007 的值 输入输出样例 输入样例#1: 5 输出样例#1: 5 输入样例#2: 10 输出样例#2: 55 说明

洛谷——P2626 斐波那契数列(升级版)矩阵

题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数). 题目描述 请你求出第n个斐波那契数列的数mod(或%)2^31之后的值.并把它分解质因数. 输入输出格式 输入格式: n 输出格式: 把第n个斐波那契数列的数分解质因数. 输入输出样例 输入样例#1: 复制 5 输出样例#1: 复制 5=5 输入样例#2: 复制 6 输出样例#2: 复制 8=2*2*2 说明

洛谷 3938 斐波那契

[题解] 我们可以发现,对于一只编号为a的兔子,a的父亲的编号是a-f[x],其中x为a出生的月份. 而计算a出生月份的方法是:找到第一个大于等于a的f[x],x即为a出生的月份. 那么我们只要不断的找a与b的父亲,直到它们相等即可. 1 #include<cstdio> 2 #include<algorithm> 3 #define LL long long 4 using namespace std; 5 const int maxn=300010; 6 LL n,m,a,b;