py练习之斐波那契数列

# -*- coding: cp936 -*-

#斐波那契数列

def fibs(num):

rest=[0,1]

for i in range(num-2):

rest.append(rest[-2]+rest[-1])

return rest

print fibs(10)

#递归

def f(n):

if n==1:

return 1

else:

return n*f(n-1)

print f(6)

#密

def p(x,n):

if n==0:

return 1

else:

return x*p(x,n-1)

print p(2,1)

"""

isalnum()

2011-09-26 10:20:41|  分类: 随记 |  标签:isalnum  isalpha  isdigit   |字号 订阅

该函数的说明是这样的:

Checks for an ASCII alphanumeric character; it is equivalent to "isalpha(c) or isdigit(c)".

意思是说检查一个Ascii 字母数字字符,等同于isalpha,或者isdigit

比如:

>>> seq=["foo","x41","?~","****"]

>>> [x for x in seq if x.isalnum()]

[‘foo‘, ‘x41‘]

s.isalnum() 所有字符都是数字或者字母

>>>

"""

"""
girls=[‘alice‘,‘bernice‘,‘clarice‘]
boys=[‘chris‘,‘arnold‘,‘bob‘]
letterGirls={}
for girl in girls:
letterGirls.setdefault(girl[0],[]).append(girl)
print [(b+‘+‘+g) for b in boys for g in letterGirls[b[0]]]
"""
f=[0,1]
num=input(‘num:‘)
for i in range(num-2):
f.append(f[-2]+f[-1])
print f
f=[0,1]
nun=input(‘n:‘)
for i in range(nun-2):
print i,
print f[nun]

时间: 2024-12-26 17:36:49

py练习之斐波那契数列的相关文章

python3 求斐波那契数列(Fibonacci sequence)

输出斐波那契数列的前多少个数. 利用函数 #!/usr/bin/env python # -*- coding:utf-8 -*- # Author:Hiuhung Wan # ----斐波那契数列(Fibonacci sequence)----- def check_num(number:str): ''' 对输入的字符串检查,正整数,返回Ture,否则返回False :param number: 输入的字符串 :return: 符合要求,返回Ture,不符合返回False ''' # 输入不

python 题目:斐波那契数列计算;题目:站队顺序输出;题目:合法括号组合的生成;题目:用户登录(三次机会)

斐波那契数列计算 B 描述 斐波那契数列如下: F(0) = 0, F(1) = 1 F(n) = F(n-1) + F(n-2) 编写一个计算斐波那契数列的函数,采用递归方式,输出不超过n的所有斐波那契数列元素 调用上述函数,完成如下功能: 用户输入一个整数n,输出所有不超过n的斐波那契数列元素.输出数列的元素和及平均数,输出按照顺序,用英文逗号和空格分割 此题目为自动评阅,请严格按照要求规范输入和输出. def jebona(n): if n==0: return 0 elif n == 1

用递归和非递归的方法输出斐波那契数列的第n个元素(C语言实现)

费波那契数列(意大利语:Successione di Fibonacci),又译为费波拿契数.斐波那契数列.费氏数列.黄金分割数列. 在数学上,费波那契数列是以递归的方法来定义: {\displaystyle F_{0}=0} {\displaystyle F_{1}=1} {\displaystyle F_{n}=F_{n-1}+F_{n-2}}(n≧2) 用文字来说,就是费波那契数列由0和1开始,之后的费波那契系数就是由之前的两数相加而得出.首几个费波那契系数是: 0, 1, 1, 2, 3

Fibonacci斐波拉契数列----------动态规划DP

n==10 20 30 40 50 46 体验一下,感受一下,运行时间 #include <stdio.h>int fib(int n){ if (n<=1)     return 1; else            return fib(n-1)+fib(n-2); }int main( ){ int n; scanf("%d",&n); printf("%d\n" ,fib(n) );} 先 n==10 20 30 40 50 46

《剑指Offer》题目——斐波拉契数列

题目描述:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项.(n<=39) 题目分析:如果使用简单的递归,很容易造成栈溢出.采用递推的方式即可. 代码: public class Fibonacci { public static int fibonacci(int n){ int res[] = new int[2]; res[0]=1; res[1]=1; int temp = 0; if(n==0) return 0; if(n<=2) return res[

js算法集合(二) javascript实现斐波那契数列 (兔子数列) Javascript实现杨辉三角

js算法集合(二)  斐波那契数列.杨辉三角 ★ 上一次我跟大家分享一下做水仙花数的算法的思路,并对其扩展到自幂数的算法,这次,我们来对斐波那契数列和杨辉三角进行研究,来加深对Javascript的理解. 一.Javascript实现斐波那契数列 ①要用Javascript实现斐波那契数列,我们首先要了解什么是斐波那契数列:斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为

斐波那契数列

前几天学了javascript,挺难的比之前学的H5难多了,之前还觉得H5很难,一比较之下就相形见绌了. 在JS里面代码什么的还是蛮简单的,就是逻辑问题让你绕不过来....在这些逻辑问题里又有一个既难而且十分经典的问题,那就是斐波那契数列. 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列",指的是这样一个数列:1.1.2.3.5.8.13.21.34

斐波那契数列(分析别人的代码)

斐波那契数列指的是这样一个数列 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........ 这个数列从第3项开始,每一项都等于前两项之和. n1 = 0 #给n1赋初始值 n2 = 1 #给n1赋初始值 count = 0 #给计数器初始值 while count < 10: #循环条件为计数器小于10 nth = n1 + n2 #n

快速求斐波那契数列(矩阵乘法+快速幂)

斐波那契数列 给你一个n:f(n)=f(n-1)+f(n-2) 请求出 f(f(n)),由于结果很大请 对答案 mod 10^9+7; 1<=n<=10^100; 用矩阵乘法+快速幂求斐波那契数列是经典应用: 矩阵公式 C i j=C i k *C k j; 根据递推式 构造2*2矩阵: 原始矩阵 1 0 0 1 矩阵 2 1 1 1 0 原始矩阵与矩阵 2相乘达到转化状态效果: 对矩阵二进行快速幂 乘法:达到快速转化矩阵的效果: 即使达到快速转化状态:那么大的数据范围也很难求解: 高精?这有