转载:http://blog.chinaunix.net/uid-20648445-id-3329217.html
1:资料附录:
<ug585-Zynq-7000-TRM.pdf> xilinx zynq 7000技术参考手册
<ug821-zynq-7000-swdev.pdf> xilinx zynq 7000软件开发手册
<ug925-zynq-zc702-base-trd.pdf> xilinx zynq 7020板级开发手册
<DDI0406C_arm_architecture_reference_manual.pdf> ARM v7 cortex A系列和R系列参考手册
<DDI0407H_cortex_a9_mpcore_r4p0_trm.pdf> ARM v7 cortex A9 MCORE技术参考手册
<DDI0388H_cortex_a9_r4p0_trm.pdf> ARM v7 cortex A9 技术参考手册
<IHI0048A_gic_architecture_spec_v1_0.pdf> ARM 通用中断控制器V1手册
<IHI0042D_aapcs.pdf> ARM 过程调用ABI约定手册
注:上述手册为本人进行zynq zc702开发板研究时使用参考手册,希望在后续研究过程中能对该手册内容进行概略描述,以便大家查找相关细节。待补充。
2:源码索引:
Linux源码
3:启动流程:
注:本博文以提出问题,回答问题方式进行记录本人研究双核系统的过程。希望在一步步研究及分析后,能够完整回答各个问题。以下分析基于ARM v7架构Linux代码和XILINX的ZYNQ平台。由于本博文正在更新过程中,还未完成,若对单核启动有兴趣的朋友可以查看如下资源,该资源正是本人前半部分启动需要描述的内容。
问题1-1:双核芯片上电后,是否同时启动的?
答案:双核芯片上电后,并非同时启动,启动代码运行在一个核上,而是一个核处于备用状态。
参见<ug585-Zynq-7000-TRM--P140/1671—6.3.7 Post BootROM State—Starting Code on the CPU 1>
图1:CPU1启动工作状态
图2: CPU1启动流程
问题1-2:根据上述参考资料,第二个核是通过CPU0进行设置并引导启动的,Linux是怎么完成这一步的呢?我们从内核入口函数开始研究启动过程。
答案:本部分从Linux系统启动部分开始分析,BOOT启动引导部分暂不做分析。
1)入口函数
\linux-xlnx\arch\arm\kernel\head.S
点击(此处)折叠或打开--CodeSegment 1
- /*
- * Kernel startup entry point.
- * ---------------------------
- *
- * This is normally called from the decompressor code. The requirements
- * are: MMU = off, D-cache = off, I-cache = dont care, r0 = 0,
- * r1 = machine nr, r2 = atags or dtb pointer.
- *
- * This code is mostly position independent, so if you link the kernel at
- * 0xc0008000, you call this at __pa(0xc0008000).
- *
- * See linux/arch/arm/tools/mach-types for the complete list of machine
- * numbers for r1.
- *
- * We‘re trying to keep crap to a minimum; DO NOT add any machine specific
- * crap here - that‘s what the boot loader (or in extreme, well justified
- * circumstances, zImage) is for.
- */
- .arm
- __HEAD
- ENTRY(stext)
- THUMB( adr r9, BSYM(1f) ) @ Kernel is always entered in ARM.
- THUMB( bx r9 ) @ If this is a Thumb-2 kernel,
- THUMB( .thumb ) @ switch to Thumb now.
- THUMB(1: )
- setmode PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9 @ ensure svc mode
- @ and irqs disabled
- mrc p15, 0, r9, c0, c0 @ get processor id
- bl __lookup_processor_type @ r5=procinfo r9=cpuid
- movs r10, r5 @ invalid processor (r5=0)?
- THUMB( it eq ) @ force fixup-able long branch encoding
- beq __error_p @ yes, error ‘p‘
- /* the machine has no way to get setup when we‘re using a pod so setup it
- * up for now this way, if the device tree is expected at the fixed address
- * then load R2 to find the device tree at that address
- */
- #ifdef CONFIG_ARCH_XILINX
- mov r0,#0x0
- ldr r1,=MACH_TYPE_XILINX
- #endif
- #ifdef CONFIG_XILINX_FIXED_DEVTREE_ADDR
- mov r2,#0x1000000
- #endif
- #ifdef CONFIG_ARM_LPAE
- mrc p15, 0, r3, c0, c1, 4 @ read ID_MMFR0
- and r3, r3, #0xf @ extract VMSA support
- cmp r3, #5 @ long-descriptor translation table format?
- THUMB( it lo ) @ force fixup-able long branch encoding
- blo __error_p @ only classic page table format
- #endif
- #ifndef CONFIG_XIP_KERNEL
- adr r3, 2f
- ldmia r3, {r4, r8}
- sub r4, r3, r4 @ (PHYS_OFFSET - PAGE_OFFSET)
- add r8, r8, r4 @ PHYS_OFFSET
- #else
- ldr r8, =PHYS_OFFSET @ always constant in this case
- #endif
- /*
- * r1 = machine no, r2 = atags or dtb,
- * r8 = phys_offset, r9 = cpuid, r10 = procinfo
- */
- bl __vet_atags
- #ifdef CONFIG_SMP_ON_UP
- bl __fixup_smp
- #endif
- #ifdef CONFIG_ARM_PATCH_PHYS_VIRT
- bl __fixup_pv_table
- #endif
- bl __create_page_tables
- /*
- * The following calls CPU specific code in a position independent
- * manner. See arch/arm/mm/proc-*.S for details. r10 = base of
- * xxx_proc_info structure selected by __lookup_processor_type
- * above. On return, the CPU will be ready for the MMU to be
- * turned on, and r0 will hold the CPU control register value.
- */
- ldr r13, =__mmap_switched @ address to jump to after
- @ mmu has been enabled
- adr lr, BSYM(1f) @ return (PIC) address
- mov r8, r4 @ set TTBR1 to swapper_pg_dir
- ARM( add pc, r10, #PROCINFO_INITFUNC )
- THUMB( add r12, r10, #PROCINFO_INITFUNC )
- THUMB( mov pc, r12 )
- 1: b __enable_mmu
- ENDPROC(stext)
- .ltorg
- #ifndef CONFIG_XIP_KERNEL
- 2: .long .
- .long PAGE_OFFSET
- #endif
注:本部分源码为汇编代码,汇编与C语言相互调用参数传递,返回值等相关约定参见<IHI0042D_aapcs.pdf>
问题1-2-1:U-Boot程序如何跳转到该入口函数?
答案:希望后续章节可以研究分析U-Boot源码进行深入分析。待补充。
问题1-2-2:下列代码为什么意思?THUMB宏是什么定义?ARM宏是什么定义?BSYM宏定义是什么?
点击(此处)折叠或打开--CodeSegment 2
- THUMB( adr r9, BSYM(1f) ) @ Kernel is always entered in ARM.
- THUMB( bx r9 ) @ If this is a Thumb-2 kernel,
- THUMB( .thumb ) @ switch to Thumb now.
- THUMB(1: )
答案:THUMB宏定义参见文件\linux-xlnx\arch\arm\include\asm\unified.h,分析如下宏定义可知,内核在GCC版本大于4.0后,可通过配置宏CONFIG_THUMB2_KERNEL来选择编译成THUMB指令集内核或ARM指令集内核。在编译成ARM指令集内核时,THUMB宏定义的代码行是不可见的。同理编译成THUMB指令集内核时,ARM宏定义的代码行无效。BSYM宏是为在THUMB指令集时访问标号处理而定义的宏。
点击(此处)折叠或打开--CodeSegment 3
- #ifdef CONFIG_THUMB2_KERNEL
- #if __GNUC__ < 4
- #error Thumb-2 kernel requires gcc >= 4
- #endif
- /* The CPSR bit describing the instruction set (Thumb) */
- #define PSR_ISETSTATE PSR_T_BIT
- #define ARM(x...)
- #define THUMB(x...) x
- #ifdef __ASSEMBLY__
- #define W(instr) instr.w
- #define BSYM(sym) sym + 1
- #endif
- #else /* !CONFIG_THUMB2_KERNEL */
- /* The CPSR bit describing the instruction set (ARM) */
- #define PSR_ISETSTATE 0
- #define ARM(x...) x
- #define THUMB(x...)
- #ifdef __ASSEMBLY__
- #define W(instr) instr
- #define BSYM(sym) sym
- #endif
- #endif /* CONFIG_THUMB2_KERNEL */
问题1-2-3:THUMB指令集与ARM指令集区别,什么是THUMB-2指令集
答案:待补充
问题1-2-4:setmode是什么定义?
答案:setmode定义参见文件\linux-xlnx\arch\arm\include\asm\assembler.h,下面代码为一个汇编宏定义。根据不同的指令集采用不同的宏定义,用于设置CPSR。
点击(此处)折叠或打开--CodeSegment 4
- #ifdef CONFIG_THUMB2_KERNEL
- .macro setmode, mode, reg
- mov \reg, #\mode
- msr cpsr_c, \reg
- .endm
- #else
- .macro setmode, mode, reg
- msr cpsr_c, #\mode
- .endm
- #endif
问题1-2-5: __lookup_processor_type是什么?查找处理器类型?
答案:该汇编函数定义位于文件\linux-xlnx\arch\arm\kernel\head-common.S,分析如下汇编代码,通过从__lookup_processor_type_data中获取处理器信息位置,通过轮询查找该内核是否支持该本处理器。其中r9是通过processor id。本代码段会进行详细注释,汇编指令
参见<DDI0406C_arm_architecture_reference_manual--P157/2680—A8 Instruction Details—Alphabetical list of instructions>
点击(此处)折叠或打开--CodeSegment 5
- /*
- * Read processor ID register (CP#15, CR0), and look up in the linker-built
- * supported processor list. Note that we can‘t use the absolute addresses
- * for the __proc_info lists since we aren‘t running with the MMU on
- * (and therefore, we are not in the correct address space). We have to
- * calculate the offset.
- *
- * r9 = cpuid
- * Returns:
- * r3, r4, r6 corrupted
- * r5 = proc_info pointer in physical address space
- * r9 = cpuid (preserved)
- */
- __CPUINIT
- __lookup_processor_type:
- adr r3, __lookup_processor_type_data @ R3指向类型数据指针(此处R3是物理地址,可查看反汇编代码,下图3所示)
- ldmia r3, {r4 - r6} @ 读取R3指向地址三个WORD数据到R4,R5,R6
- sub r3, r3, r4 @ 物理地址-虚拟地址
- add r5, r5, r3 @ 将R5的虚拟地址转换成物理地址,R5为类型数据起始地址
- add r6, r6, r3 @ 将R6的虚拟地址转换成物理地址,R6为类型数据结束地址
- 1: ldmia r5, {r3, r4} @ 从R5指向的地址读取两个WORD到R3,R4
- and r4, r4, r9 @ 获取判断位
- teq r3, r4 @ 判断本处理器类型是否已找到
- beq 2f @ 若已找到,跳转到2:执行
- add r5, r5, #PROC_INFO_SZ @ 若未找到,R5指针增到一个类型数据长度
- cmp r5, r6 @ 是否已查找完所有处理器类型
- blo 1b
- mov r5, #0 @ 若未找到本处理器类型信息,返回值R5设置为NULL
- 2: mov pc, lr
- ENDPROC(__lookup_processor_type)
问题1-2-6: __lookup_processor_type_data是什么?上个问题中R3,R4,R5,R6寄存器是指向什么数据?
答案: __lookup_processor_type_data数据结构定义位于文件\linux-xlnx\arch\arm\kernel\head-common.S,参见汇编代码可知,该数据结构有三个数据,数据内容参见代码注释。
点击(此处)折叠或打开--CodeSegment 6
- /*
- * Look in <asm/procinfo.h> for information about the __proc_info structure.
- */
- .align 2
- .type __lookup_processor_type_data, %object
- __lookup_processor_type_data:
- .long . @ 当前内存地址(此处为虚拟地址)
- .long __proc_info_begin @ 处理器类型信息起始地址
- .long __proc_info_end @ 处理器类型信息结束地址
- .size __lookup_processor_type_data, . - __lookup_processor_type_data
通过反汇编,我们可以查看内核编译完成后各个数据结构的具体数据。
图3 反汇编代码
__proc_info_begin,__proc_info_end定义位于\linux-xlnx\arch\arm\kernel\vmlinux.lds.S,它用于存储.proc.info.init段的起始地址及结束地址。
点击(此处)折叠或打开--CodeSegment 7
- VMLINUX_SYMBOL(__proc_info_begin) = .; \
- *(.proc.info.init) \
- VMLINUX_SYMBOL(__proc_info_end) = .;
.proc.info.init段定义位于\linux-xlnx\arch\arm\mm\proc-v7.S,该文件定义了本内核版本支持的ARM v7架构下处理器类型,如下列代码Line 29行表示本版本支持ARM Cortex A5 Processor,Line 39表示本版本支持ARM Cortex A9 Processor等。
点击(此处)折叠或打开--CodeSegment 8
- .section ".proc.info.init", #alloc, #execinstr
- /*
- * Standard v7 proc info content
- */
- .macro __v7_proc initfunc, mm_mmuflags = 0, io_mmuflags = 0, hwcaps = 0
- ALT_SMP(.long PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | \
- PMD_SECT_AF | PMD_FLAGS_SMP | \mm_mmuflags)
- ALT_UP(.long PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | \
- PMD_SECT_AF | PMD_FLAGS_UP | \mm_mmuflags)
- .long PMD_TYPE_SECT | PMD_SECT_AP_WRITE | \
- PMD_SECT_AP_READ | PMD_SECT_AF | \io_mmuflags
- W(b) \initfunc
- .long cpu_arch_name
- .long cpu_elf_name
- .long HWCAP_SWP | HWCAP_HALF | HWCAP_THUMB | HWCAP_FAST_MULT | \
- HWCAP_EDSP | HWCAP_TLS | \hwcaps
- .long cpu_v7_name
- .long v7_processor_functions
- .long v7wbi_tlb_fns
- .long v6_user_fns
- .long v7_cache_fns
- .endm
- #ifndef CONFIG_ARM_LPAE
- /*
- * ARM Ltd. Cortex A5 processor.
- */
- .type __v7_ca5mp_proc_info, #object
- __v7_ca5mp_proc_info:
- .long 0x410fc050
- .long 0xff0ffff0
- __v7_proc __v7_ca5mp_setup
- .size __v7_ca5mp_proc_info, . - __v7_ca5mp_proc_info
- /*
- * ARM Ltd. Cortex A9 processor.
- */
- .type __v7_ca9mp_proc_info, #object
- __v7_ca9mp_proc_info:
- .long 0x410fc090
- .long 0xff0ffff0
- __v7_proc __v7_ca9mp_setup
- .size __v7_ca9mp_proc_info, . - __v7_ca9mp_proc_info
- #endif /* CONFIG_ARM_LPAE */
- /*
- * ARM Ltd. Cortex A7 processor.
- */
- .type __v7_ca7mp_proc_info, #object
- __v7_ca7mp_proc_info:
- .long 0x410fc070
- .long 0xff0ffff0
- __v7_proc __v7_ca7mp_setup, hwcaps = HWCAP_IDIV
- .size __v7_ca7mp_proc_info, . - __v7_ca7mp_proc_info
- ......
问题1-2-7: 在上述问题中我们可以看到支持的处理信息数据,但这些数据是什么样的结构呢?代表什么意义呢?
答案:.proc.info.init段中数据是以proc_info_list结构的方式进行连续存放的。该结构体的定义位于\linux-xlnx\arch\arm\include\asm\procinfo.h,
点击(此处)折叠或打开--CodeSegment 9
- /*
- * Note! struct processor is always defined if we‘re
- * using MULTI_CPU, otherwise this entry is unused,
- * but still exists.
- *
- * NOTE! The following structure is defined by assembly
- * language, NOT C code. For more information, check:
- * arch/arm/mm/proc-*.S and arch/arm/kernel/head.S
- */
- struct proc_info_list {
- unsigned int cpu_val;
- unsigned int cpu_mask;
- unsigned long __cpu_mm_mmu_flags; /* used by head.S */
- unsigned long __cpu_io_mmu_flags; /* used by head.S */
- unsigned long __cpu_flush; /* used by head.S */
- const char *arch_name;
- const char *elf_name;
- unsigned int elf_hwcap;
- const char *cpu_name;
- struct processor *proc;
- struct cpu_tlb_fns *tlb;
- struct cpu_user_fns *user;
- struct cpu_cache_fns *cache;
- };
问题1-2-8:__vet_atags是什么?
答案:待补充
点击(此处)折叠或打开--CodeSegment 10
- /* Determine validity of the r2 atags pointer. The heuristic requires
- * that the pointer be aligned, in the first 16k of physical RAM and
- * that the ATAG_CORE marker is first and present. If CONFIG_OF_FLATTREE
- * is selected, then it will also accept a dtb pointer. Future revisions
- * of this function may be more lenient with the physical address and
- * may also be able to move the ATAGS block if necessary.
- *
- * Returns:
- * r2 either valid atags pointer, valid dtb pointer, or zero
- * r5, r6 corrupted
- */
- __vet_atags:
- tst r2, #0x3 @ aligned?
- bne 1f
- ldr r5, [r2, #0]
- #ifdef CONFIG_OF_FLATTREE
- ldr r6, =OF_DT_MAGIC @ is it a DTB?
- cmp r5, r6
- beq 2f
- #endif
- cmp r5, #ATAG_CORE_SIZE @ is first tag ATAG_CORE?
- cmpne r5, #ATAG_CORE_SIZE_EMPTY
- bne 1f
- ldr r5, [r2, #4]
- ldr r6, =ATAG_CORE
- cmp r5, r6
- bne 1f
- 2: mov pc, lr @ atag/dtb pointer is ok
- 1: mov r2, #0
- mov pc, lr
- ENDPROC(__vet_atags)
问题1-2-9:__fixup_smp是什么?