关于stm32定时器的理解

TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;

表面意思是输出控制极性为高,但是意思是定时器输入0,不反相,输出0;

输出控制极性为低,定时器输入0,反相输出1;

CC1E控制开关。

#define TIM_OCPolarity_High                ((uint16_t)0x0000)
#define TIM_OCPolarity_Low                 ((uint16_t)0x0002)

定时器通道写法: TIM_OC2 意思是定时器channel 2 ,TIM_OC1意思是定时器通道1.

//小波Linux

pwm占空比:

TIM_SetCompare1(TIM2,led1pwmval);  
   TIM_SetCompare2(TIM3,led0pwmval);

TIMX为哪个定时器,ledxpwmval为占空比的值;

TIM2_PWM_Init(899,0);  //不分频 72000/900=8Khz

arr 自动重装载计数器初值 900 =899+1;

占空比例如 占 50% = 450 / 900

ledxpwmval = 450;

定时器初始化,里面有个重映射

void TIM2_PWM_Init(u16 arr,u16 psc) {

GPIO_InitTypeDef GPIO_InitStructure;  TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;  TIM_OCInitTypeDef  TIM_OCInitStructure;

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); //使能定时器3时钟   RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);  //使能GPIO外设和AFIO复用功能模块时钟      //设置该引脚为复用输出功能,输出TIM2 CH1的PWM脉冲波形  PA0  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; //TIM_CH1  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  //复用推挽输出  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;  GPIO_Init(GPIOA, &GPIO_InitStructure);//初始化GPIO      //初始化TIM2  TIM_TimeBaseStructure.TIM_Period = arr;    //设置在下一个更新事件装入活动的自动重装载寄存器周期的值  TIM_TimeBaseStructure.TIM_Prescaler =psc;  //设置用来作为TIMx时钟频率除数的预分频值  TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式  TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位    //初始化TIM2 Channel 1 PWM模式   TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;             //选择定时器模式:TIM脉冲宽度调制模式2   TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;     //输出极性:TIM输出比较极性高  TIM_OC1Init(TIM2, &TIM_OCInitStructure);                     //根据T指定的参数初始化外设TIM2 OC1

TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Enable);  //使能TIM2在CCR1上的预装载寄存器    TIM_Cmd(TIM2, ENABLE);  //使能TIM2

}

//TIM3 PWM部分初始化 //PWM输出初始化 //arr:自动重装值 //psc:时钟预分频数 void TIM3_PWM_Init(u16 arr,u16 psc) {   GPIO_InitTypeDef GPIO_InitStructure;  TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;  TIM_OCInitTypeDef  TIM_OCInitStructure;  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); //使能定时器3时钟   RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB  | RCC_APB2Periph_AFIO, ENABLE);  //使能GPIO外设和AFIO复用功能模块时钟    GPIO_PinRemapConfig(GPIO_PartialRemap_TIM3, ENABLE); //Timer3部分重映射  TIM3_CH2->PB5         //设置该引脚为复用输出功能,输出TIM3 CH2的PWM脉冲波形 GPIOB.5  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; //TIM_CH2  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  //复用推挽输出  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;  GPIO_Init(GPIOB, &GPIO_InitStructure);//初始化GPIO      //初始化TIM3  TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值  TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值  TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式  TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位    //初始化TIM3 Channel2 PWM模式   TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //选择定时器模式:TIM脉冲宽度调制模式2   TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性高  TIM_OC2Init(TIM3, &TIM_OCInitStructure);  //根据T指定的参数初始化外设TIM3 OC2

TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);  //使能TIM3在CCR2上的预装载寄存器    TIM_Cmd(TIM3, ENABLE);  //使能TIM3

}

时间: 2024-10-03 10:11:46

关于stm32定时器的理解的相关文章

STM32定时器的预装载寄存器与影子寄存器之间的关系【转】

首先转载:   STM32定时器的预装载寄存器与影子寄存器之间的关系 本文的说明依据STM32参考手册(RM0008)第10版:英文:http://www.st.com/stonline/products/literature/rm/13902.pdf中译文:http://www.stmicroelectronics.com.cn/stonline/mcu/images/STM32_RM_CH_V10_1.pdf 在STM32参考手册的第13.14章中,都有一张定时器的框图,下面是第14章中定时

STM32 定时器用于外部脉冲计数(转)

源:STM32 定时器用于外部脉冲计数 STM32 定时器(一)——定时器时间的计算 STM32的定时器是灰常NB的,也是灰常让人头晕的(当然是对于白菜来说的). STM32中的定时器有很多用法: (一)系统时钟(SysTick) 设置非常简单,以下是产生1ms中断的设置,和产生10ms延时的函数: void RCC_Configuration(void) { RCC_ClocksTypeDef RCC_ClockFreq; SystemInit();//源自system_stm32f10x.c

第八章:STM32定时器

时间:2014年8月15日 一.定时器种类:      1.四个可同步运行的通用定时器(TIM2~TIM5),每个均有一个16位的自动加载递增/递减计数器.一个16位预分频器和4个独立的通道.       2.两个16位高级控制定时器(TIM1和TIM8)         特点:由一个可编程预分频器驱动的16为自动装载 计数器组成,与通用定时器有共同处,但功能更强大.       3.两个基本定时器(TIM6和TIM7)        特点:主要用于产生DAC触发信号,也可以当作通用的16为时基

[原创] STM32 定时器TIMx 编码器应用 函数 TIM_EncoderInterfaceConfig 分析

今天把STM32 定时器输入作为 编码器接口相关的 函数   TIM_EncoderInterfaceConfig ,好好分析了一遍 因为网上不少人对这个函数有问题 1 void TIM_EncoderInterfaceConfig(TIM_TypeDef* TIMx, uint16_t TIM_EncoderMode, 2 uint16_t TIM_IC1Polarity, uint16_t TIM_IC2Polarity) 3 { 4 uint16_t tmpsmcr = 0; 5 uint

stm32定时器计数功能

stm32的外部时钟源模式2和外部时钟源模式1都可以用来实现计数功能,他们的区别是什么呢? 以上2种模式对应不同的管脚输入: 外部时钟源模式2 <-->TIMx_ETR 外部时钟源模式1 <-->TIMx_CHx 从功能框图可以看到,ETR模式下多了一个分频器ETPS,搜索该分频器的寄存器,有如下解释:外部触发信号ETRP的频率必须最多是TIMxCLK频率的1/4.当输入较快的外部时钟时,可以使用预分频降低ETRP的频率. 每个定时器只能对一路信号计数,但每个定时器可同时捕捉4路信

(二)STM32中中断优先级理解

很多人在配置STM32中断时对固件库中的这个函数NVIC_PriorityGroupConfig()——配置优先级分组方式,会很不理解,尤其是看中文翻译版的,因为中文翻译版里把这里翻译成“先占优先级和从优先级”这样翻译其实是不对的,很容易让人误解.为了便于大家理解,有必要先解释两个概念: 抢占式优先级/响应优先级: STM32(Cortex-M3)中有两个优先级的概念——抢占式优先级和响应优先级,有人把响应优先级称作'亚优先级'或'副优先级',每个中断源都需要被指定这两种优先级. 具有高抢占式优

STM32 定时器级联

根据参考手册给出的主/ 从定时器的例子 其实就是主定时器产生一个触发信号,让从定时器去接收这个触发信号,通过这个触发信号来让从定时器工作. 下面我们来看看我设置的从定时器 只需要配置 TIMx->SMCR 的TS[2:0] (Trigger selection)   选择是哪一个触发信号来触发从定时器工作 和位 SMS[2:0](Slave mode Selection)  选择外部时钟模式1-选中(TRGI)的上升沿驱动计数器 下面是STM32规定的内部触发连接的表格,如果某个产品中没有 相应

关于Stm32定时器+ADC+DMA进行AD采样的实现

Stm32的ADC有DMA功能这都毋庸置疑,也是我们用的最多的!然而,如果我们要对一个信号(比如脉搏信号)进行定时采样(也就是隔一段时间,比如说2ms),有三种方法: 1.使用定时器中断每隔一定时间进行ADC转换,这样每次都必须读ADC的数据寄存器,非常浪费时间! 2.把ADC设置成连续转换模式,同时对应的DMA通道开启循环模式,这样ADC就一直在进行数据采集然后通过DMA把数据搬运至内存.但是这样做的话还得加一个定时中断,用来定时读取内存中的数据! 3.使用ADC的定时器触发ADC转换的功能,

STM32 GPIO模式理解

stm32的GPIO的配置模式有好几种,包括: 1. 模拟输入: 2. 浮空输入: 3. 上拉输入: 4. 下拉输入: 5. 开漏输出: 6. 推挽输出: 7. 复用开漏输出: 8. 复用推挽输出 如图是GPIO的结构原理图: 1.模拟输入 从上图我们可以看到,我觉得模拟输入最重要的一点就是,他不经过输入数据寄存器,所以我们无法通过读取输入数据寄存器来获取模拟输入的值,我觉得这一点也是很好理解的,因为输入数据寄存器中存放的不是0就是1,而模拟输入信号不符合这一要求,所以自然不能放进输入数据寄存器