TensorFlow学习笔记 补充1——InteractiveSession

InteractiveSession

大家有时候在阅读代码时会看见InteractiveSession而不是熟悉的Session,这是什么东东呢?

其实,它们只有一点不同。。。。。

InteractiveSession是默认的session,这就意味着你可以在不声明session的条件下直接使用run(),eval() 。这在interactive shells 和 IPython notebooks 中非常方便!

上例子:

1 sess = tf.InteractiveSession()
2 a = tf.constant(5.0)
3 b = tf.constant(6.0)
4 c = a * b
5 # We can just use ‘c.eval()‘ without passing ‘sess‘
6 print(c.eval())
7 sess.close()
时间: 2024-10-06 01:11:25

TensorFlow学习笔记 补充1——InteractiveSession的相关文章

Tensorflow学习笔记2:About Session, Graph, Operation and Tensor

简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节点之间则是由张量(Tensor)作为边来连接在一起的.所以Tensorflow的计算过程就是一个Tensor流图.Tensorflow的图则是必须在一个Session中来计算.这篇笔记来大致介绍一下Session.Graph.Operation和Tensor. Session Session提供了O

STM32 FSMC学习笔记+补充(LCD的FSMC配置)

STM32 FSMC学习笔记+补充(LCD的FSMC配置) STM32 FSMC学习笔记 STM32 FSMC的用法--LCD

TensorFlow学习笔记(UTF-8 问题解决 UnicodeDecodeError: 'utf-8' codec can't decode byte 0xff in position 0: invalid start byte)

我使用VS2013  Python3.5  TensorFlow 1.3  的开发环境 UnicodeDecodeError: 'utf-8' codec can't decode byte 0xff in position 0: invalid start byte 在是使用Tensorflow读取图片文件的情况下,会出现这个报错 代码如下 # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np import mat

Tensorflow学习笔记(一):MNIST机器学习入门

学习深度学习,首先从深度学习的入门MNIST入手.通过这个例子,了解Tensorflow的工作流程和机器学习的基本概念. 一  MNIST数据集 MNIST是入门级的计算机视觉数据集,包含了各种手写数字的图片.在这个例子中就是通过机器学习训练一个模型,以识别图片中的数字. MNIST数据集来自 http://yann.lecun.com/exdb/mnist/ Tensorflow提供了一份python代码用于自动下载安装数据集.Tensorflow官方文档中的url打不开,在CSDN上找到了一

Tensorflow学习笔记3:TensorBoard可视化学习

TensorBoard简介 Tensorflow发布包中提供了TensorBoard,用于展示Tensorflow任务在计算过程中的Graph.定量指标图以及附加数据.大致的效果如下所示, TensorBoard工作机制 TensorBoard 通过读取 TensorFlow 的事件文件来运行.TensorFlow 的事件文件包括了你会在 TensorFlow 运行中涉及到的主要数据.关于TensorBoard的详细介绍请参考TensorBoard:可视化学习.下面做个简单介绍. Tensorf

tensorflow学习笔记(二)

import tensorflow as tfimport numpy as npimport mathimport tensorflow.examples.tutorials.mnist as mn sess = tf.InteractiveSession()mnist = mn.input_data.read_data_sets("E:\\Python35\\Lib\\site-packages\\tensorflow\\examples\\tutorials\\mnist\\MNIST_d

TensorFlow学习笔记(8)--网络模型的保存和读取【转】

转自:http://blog.csdn.net/lwplwf/article/details/62419087 之前的笔记里实现了softmax回归分类.简单的含有一个隐层的神经网络.卷积神经网络等等,但是这些代码在训练完成之后就直接退出了,并没有将训练得到的模型保存下来方便下次直接使用.为了让训练结果可以复用,需要将训练好的神经网络模型持久化,这就是这篇笔记里要写的东西. TensorFlow提供了一个非常简单的API,即tf.train.Saver类来保存和还原一个神经网络模型. 下面代码给

Tensorflow学习笔记(对MNIST经典例程的)的代码注释与理解

1 #coding:utf-8 2 # 日期 2017年9月4日 环境 Python 3.5  TensorFlow 1.3 win10开发环境. 3 import tensorflow as tf 4 from tensorflow.examples.tutorials.mnist import input_data 5 import os 6 7 8 # 基础的学习率 9 LEARNING_RATE_BASE = 0.8 10 11 # 学习率的衰减率 12 LEARNING_RATE_DE

Tensorflow学习笔记(1)

一.背景 本人学习Tensorflow是为了完成毕业设计的工作,之前并没有用过其他的深度学习平台,Tensorflow作为当前很流行的一个平台,无论是教学文档,还是使用其开发的工程,这些资源都是很丰富的,所以很适合新手来进行入门.Tensorflow的具体背景我就不过多的介绍了,网上有很多的资源.另外我写这一系列博客的目的是激励自己吧,逼着自己学得更透彻一点,毕竟会用和能熟悉的写成教程还是两码事,希望自己能坚持下去. 2.Tensorflow安装 我使用的是自己的笔记本电脑,配置是i7-6700