Description
Let’s play a puzzle using eight cubes placed on a 3 × 3 board leaving one empty square.
Faces of cubes are painted with three colors. As a puzzle step, you can roll one of the cubes to a adjacent empty square. Your goal is to make the specified color pattern visible from above by a number of such steps.
The rules of this puzzle are as follows.
- Coloring of Cubes: All the cubes area colored in the same way as shown in Figure 1. The opposite faces have the same color.
Figure 1: Coloring of a cube
- Initial Board State: Eight cubes are placed on the 3 × 3 board leaving one empty square. All the cubes have the same orientation as shown in Figure 2. As shown in the figure, squares on the board are given x and y coordinates,
(1, 1), (1, 2), …, and (3, 3). The position of the initially empty square may vary.Figure 2: Initial board state
- Rolling Cubes: At each step, we can choose one of the cubes adjacent to the empty square and roll it into the empty square, leaving the original position empty. Figure 3 shows an example.
Figure 3: Rolling a cube
- Goal: The goal of this puzzle is to arrange the cubes so that their top faces form the specified color pattern by a number of cube rolling steps described above.
Your task is to write a program that finds the minimum number of steps required to make the specified color pattern from the given initial state.
Input
The input is a sequence of datasets. The end of the input is indicated by a line containing two zeros separated by a space. The number of datasets is less than 16. Each dataset is formatted as follows.
x y F11 F21 F31 F12 F22 F32 F13 F23 F33
The first line contains two integers x and y separated by a space, indicating the position (x, y) of the initially empty square. The values of x and y are 1, 2, or 3.
The following three lines specify the color pattern to make. Each line contains three characters F1j, F2j, and F3j, separated by a space. Character Fij indicates
the top color of the cube, if any, at the position (i, j) as follows:
B:
Blue,
W:
White,
R:
Red,
E:
the square is Empty.
There is exactly one ‘E
’ character in each dataset.
Output
For each dataset, output the minimum number of steps to achieve the goal, when the goal can be reached within 30 steps. Otherwise, output “-1
” for the dataset.
Sample Input
1 2 W W W E W W W W W 2 1 R B W R W W E W W 3 3 W B W B R E R B R 3 3 B W R B W R B E R 2 1 B B B B R B B R E 1 1 R R R W W W R R E 2 1 R R R B W B R R E 3 2 R R R W E W R R R 0 0
Sample Output
0 3 13 23 29 30 -1 -1
Source
思路:数据太大,先抽象出状态,再哈希一下,然后就是双向BFS。
#include <stdio.h> #include <string.h> #include <stack> using namespace std; #define INF 99999999 struct{ int step,state; }t,que1[1000000],que2[1000000]; stack<int>stk; bool vis1[5000007],vis2[5000007]; int top1,top2,bottom1,bottom2,mp[9],nxt[2][7]={{0,4,6,5,1,3,2},{0,5,3,2,6,1,4}},head[5000007],next[5000007],val[5000007],total; int hashval(int x) { int t,i; t=x%5000007; for(i=head[t];i!=-1;i=next[i]) { if(val[i]==x) return i; } val[total]=x; next[total]=head[t]; head[t]=total; total++; return total-1; } void pushtarget(int cnt,int state) { if(cnt==-1) { vis2[hashval(state)]=1; que2[bottom2].step=0; que2[bottom2].state=state; bottom2++; return; } if(mp[cnt]%2) { pushtarget(cnt-1,state*7+mp[cnt]); pushtarget(cnt-1,state*7+mp[cnt]+1); } else pushtarget(cnt-1,state*7); } int getstate() { int temp=0; for(int i=8;i>=0;i--) { temp=temp*7+mp[i]; } return temp; } void spread(int x) { int i=0,temp,cnt,old; while(i<9) { if(x%7==0) cnt=i; mp[i++]=x%7; x/=7; } cnt+=1; if(cnt>=0 && cnt<9 && cnt%3>0) { old=mp[cnt]; mp[cnt-1]=nxt[0][mp[cnt]]; mp[cnt]=0; stk.push(getstate()); mp[cnt]=old; mp[cnt-1]=0; } cnt-=1; cnt-=1; if(cnt>=0 && cnt<9 && cnt%3<2) { old=mp[cnt]; mp[cnt+1]=nxt[0][mp[cnt]]; mp[cnt]=0; stk.push(getstate()); mp[cnt]=old; mp[cnt+1]=0; } cnt+=1; cnt-=3; if(cnt>=0 && cnt<9) { old=mp[cnt]; mp[cnt+3]=nxt[1][mp[cnt]]; mp[cnt]=0; stk.push(getstate()); mp[cnt]=old; mp[cnt+3]=0; } cnt+=3; cnt+=3; if(cnt>=0 && cnt<9) { old=mp[cnt]; mp[cnt-3]=nxt[1][mp[cnt]]; mp[cnt]=0; stk.push(getstate()); mp[cnt]=old; mp[cnt-3]=0; } cnt-=3; } int bfs() { int step1=0,step2=0,ans=INF,temp; for(step1=0;step1<=20;step1++) { while(top1<bottom1 && que1[top1].step==step1) { spread(que1[top1].state); while(!stk.empty()) { temp=stk.top(); stk.pop(); if(vis2[hashval(temp)]) { return step1+step2+1; } if(!vis1[hashval(temp)]) { vis1[hashval(temp)]=1; que1[bottom1].state=temp; que1[bottom1].step=que1[top1].step+1; bottom1++; } } top1++; } while(top2<bottom2 && que2[top2].step==step2 && step2<9) { spread(que2[top2].state); while(!stk.empty()) { temp=stk.top(); stk.pop(); if(vis1[hashval(temp)]) return step1+step2+2; if(!vis2[hashval(temp)]) { vis2[hashval(temp)]=1; que2[bottom2].state=temp; que2[bottom2].step=step2+1; bottom2++; } } top2++; } if(step2<9) step2++; } return -1; } int main() { int x,y,i,j,temp; char ctemp; while(~scanf("%d%d",&y,&x) && x) { x--; y--; top1=top2=bottom1=bottom2=0; memset(vis1,0,sizeof vis1); memset(vis2,0,sizeof vis2); memset(head,-1,sizeof head); total=0; while(!stk.empty()) stk.pop(); for(i=0;i<9;i++) { ctemp=getchar(); if(ctemp=='\n' || ctemp==' ') { i--; continue; } if(ctemp=='W')mp[i]=1; else if(ctemp=='B') mp[i]=3; else if(ctemp=='R') mp[i]=5; else if(ctemp=='E') mp[i]=0; } pushtarget(8,0); temp=0; for(i=8;i>=0;i--) { if(i!=x*3+y) temp=temp*7+1; else temp*=7; } if(vis2[hashval(temp)]) { printf("0\n"); continue; } vis1[hashval(temp)]=1; que1[bottom1].step=0; que1[bottom1].state=temp; bottom1++; printf("%d\n",bfs()); } }
POJ-3131-Cubic Eight-Puzzle(双向BFS+哈希)