当时想到了贪心,但是不知为何举出了反列。。。。我是逗比,看了点击打开链接。才发现我是逗比。
Problem Description
There is a special number sequence which has n+1 integers. For each number in sequence, we have two rules:
● ai ∈ [0,n]
● ai ≠ aj( i ≠ j )
For sequence a and sequence b, the integrating degree t is defined as follows(“⊕” denotes exclusive or):
t = (a0 ⊕ b0) + (a1 ⊕ b1) +···+ (an ⊕ bn)
(sequence B should also satisfy the rules described above)
Now give you a number n and the sequence a. You should calculate the maximum integrating degree t and print the sequence b.
Input
There are multiple test cases. Please process till EOF.
For each case, the first line contains an integer n(1 ≤ n ≤ 105), The second line contains a0,a1,a2,...,an.
Output
For each case, output two lines.The first line contains the maximum integrating degree t. The second line contains n+1 integers b0,b1,b2,...,bn. There is exactly one space between bi and bi+1(0
≤ i ≤ n - 1). Don’t ouput any spaces after bn.
Sample Input
4 2 0 1 4 3
Sample Output
20 1 0 2 3 4
Source
2014 ACM/ICPC Asia Regional Xi‘an Online
枚举贪心即可。
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<cstdlib> #include<map> using namespace std; typedef long long LL; const int maxn=1e5+100; LL a[maxn]; LL d[maxn]; int main() { LL n; while(~scanf("%I64d",&n)) { for(LL i=0;i<=n;i++) scanf("%I64d",&a[i]); memset(d,-1,sizeof(d)); LL ans=0; for(LL i=n;i>=0;i--) { LL t=0; if(d[i]==-1) { for(LL j=0;;j++) { if(!(i&(1<<j))) t+=(1<<j); if(t>=i) { t-=(1<<j); break; } } ans+=(i^t)*2; d[i]=t; d[t]=i; } } printf("%I64d\n",ans); for(LL i=0;i<=n;i++) printf(i==n?"%I64d\n":"%I64d ",d[a[i]]); } return 0; }