Poisson回归模型

Poisson回归模型也是用来分析列联表和分类数据的一种方法,它实际上也是对数线性模型的一种,不同点是对数线性模型假定频数
分布为多项式分布,而泊松回归模型假定频数分布为泊松分布。

首先我们来认识一下泊松分布:

一、泊松分布的概念和实际意义:

我们知道二项分布是离散型概率分布中最重要的一种,而二项分布的极限形式就是泊松分布(P很小,n很大),也是非常重要的一种离

散型概率分布,现实世界中许多偶然现象都可以用泊松分布来描述。

泊松分布认为:如果某些现象的发生概率p很小,而样本例数n又很大,则二项分布逼近泊松分布。因此泊松分布是由二项分布推导

出的,具体推导过程如下:

因此泊松分布的概率函数就为

如果一个随机变量x取值为k的概率符合上述公式,则称x服从参数为λ的泊松分布

我们结合二项分布来解释一下推导过程:

如果做一件事情成功的概率是p的话,那么独立尝试做这件事情n次,成功次数的分布就符合二项分布。在做的n次试验中,成功次数

有可能是0次,1次,2次...n次,每一次试验成功的概率是p,不成功的概率是1-p,成功k次的试验可以任意分布在总共的n次试验中

,把它们相乘就是恰好成功k次的概率,也就是上面的

那么我们接着考虑:在一个特定时间内,某件事会在任意时刻随机发生。当我们把 这个时间段分割成非常小的n个时间片(n—+∞)并做如下假定:

1.每个时间片内事件发生是独立的,和前后是否发生无关,也就相当于是独立试验。

2.由于n—+∞,那么在1/n这么小的一个时间片内,某个事件发生两次或更多是不可能的。

3.每个时间片内该事件发生的概率p与时间片个数n的乘积n*p=λ,为一常数,这个常数表示了该事件在这个时间段内发生的频度,

或称为总体均值、总体发生数等,也就是上面的令p=λ/n

结合以上解释,我们可以了解由二项分布推导出泊松分布的思想,如果用概率论的语言来解释泊松分布,可以描述为:如果某事件

的总体发生次数为λ,那么在n个独立试验中,该事件发生k次的概率分布。

泊松分布可以看做是二项分布的一种特例,对于n很大而p很小的试验,使用二项分布计算十分麻烦,此时可简化为泊松分布进行计

算,并且泊松分布非常适合于描述单位时间内随机事件发生次数的概率分布,它将发生次数这种原本离散的数据,和时间结合起来

,从而形成了一种类似连续性的概率分布,而二项分布主要是研究n个离散事件的概率分布。

二、泊松分布的条件

1.n很大而p很小
2.事件的发生是相互独立的,每个事件发生的概率相等
3.事件是二分类数据

实际上上述2,3点也是二项分布的条件

三、泊松分布的性质

1.泊松分布的总体均值λ和方差相等
2.当λ较小时,泊松分布呈偏态分布,随着λ增大,泊松分布渐近正态分布,可做正态分布处理,注意这种渐近速度是很快的。
3.泊松分布具有可加性

========================================

介绍完泊松分布,我们来讲泊松回归模型

设有一个解释变量x,可以写出如下回归模型
g(μ)=α+β01x
这个g就是连接函数,如果取其对数,则为
ln(μ)=α+β01x
这个模型的结构和回归模型非常相似,如果因变量y服从泊松分布,那么这个模型就称为泊松回归模型。
泊松回归模型就是描述服从泊松分布的因变量y的均值μ与各协变量x1...xm关系的回归模型。
如果各单元格内发生事件的观察基数不同,需要转化为相同基数再进行分析
ln(μ/n)=α+β01x
n表示相应单元格的观测单位数
将上式变形后得
ln(μ)=ln(n)+α+β01x
这个ln(n)称为偏移量,用于去除观察单位不相等的影响。

泊松回归模型的参数估计也使用迭代重复加权最小二乘法IRLS或极大似然估计。

时间: 2024-11-03 05:37:53

Poisson回归模型的相关文章

SPSS数据分析—配对Logistic回归模型

Lofistic回归模型也可以用于配对资料,但是其分析方法和操作方法均与之前介绍的不同,具体表现 在以下几个方面1.每个配对组共有同一个回归参数,也就是说协变量在不同配对组中的作用相同2.常数项随着配对组变化而变化,反映了非实验因素在配对组中的作用,但是我们并不关心其大小, 因此在拟合时采用条件似然函数代替了一般似然函数,从而在拟合中消去了反映层因素的参数. SPSS中没有直接拟合配对Logistic回归模型的过程,需要对数据进行一些处理,采用其他方法进行拟合,拟合方法有变量差值拟合和COX模型

【Python数据挖掘课程】九.回归模型LinearRegression简单分析氧化物数据

这篇文章主要介绍三个知识点,也是我<数据挖掘与分析>课程讲课的内容.同时主要参考学生的课程提交作业内容进行讲述,包括:        1.回归模型及基础知识:        2.UCI数据集:        3.回归模型简单数据分析. 前文推荐:       [Python数据挖掘课程]一.安装Python及爬虫入门介绍       [Python数据挖掘课程]二.Kmeans聚类数据分析及Anaconda介绍       [Python数据挖掘课程]三.Kmeans聚类代码实现.作业及优化 

机器学习之——判定边界和逻辑回归模型的代价函数

判定边界(Decision Boundary) 上一次我们讨论了一个新的模型--逻辑回归模型(Logistic Regression),在逻辑回归中,我们预测: 当h?大于等于0.5时,预测y=1 当h?小于0.5时,预测y=0 根据上面的预测,我们绘制出一条S形函数,如下: 根据函数图像,我们知道,当 z=0时,g(z)=0.5 z>0时,g(z)>0.5 z<0时,g(z)<0.5 又有: 所以 以上,为我们预知的逻辑回归的部分内容.好,现在假设我们有一个模型: 并且参数?是向

逻辑回归模型预测股票涨跌

http://www.cnblogs.com/lafengdatascientist/p/5567038.html 逻辑回归模型预测股票涨跌 逻辑回归是一个分类器,其基本思想可以概括为:对于一个二分类(0~1)问题,若P(Y=1/X)>0.5则归为1类,若P(Y=1/X)<0.5,则归为0类. 一.模型概述 1.Sigmoid函数 为了具象化前文的基本思想,这里介绍Sigmoid函数: 函数图像如下: 红色的线条,即x=0处将Sigmoid曲线分成了两部分:当 x < 0,y <

SPSS数据分析—多分类Logistic回归模型

前面我们说过二分类Logistic回归模型,但分类变量并不只是二分类一种,还有多分类,本次我们介绍当因变量为多分类时的Logistic回归模型. 多分类Logistic回归模型又分为有序多分类Logistic回归模型和无序多分类Logistic回归模型 一.有序多分类Logistic回归模型 有序多分类Logistic回归模型拟合的基本方法是拟合因变量水平数-1个Logistic回归模型,也称为累积多分类Logit模型,实际上就是将因变量依次分割成两个等级,对这两个等级建立二分类Logistic

逻辑回归模型(Logistic Regression)及Python实现

逻辑回归模型(Logistic Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 在分类问题中,比如判断邮件是否为垃圾邮件,判断肿瘤是否为阳性,目标变量是离散的,只有两种取值,通常会编码为0和1.假设我们有一个特征X,画出散点图,结果如下所示.这时候如果我们用线性回归去拟合一条直线:hθ(X) = θ0+θ1X,若Y≥0.5则判断为1,否则为0.这样我们也可以构建出一个模型去进行分类,但是会存在很多的缺点,比如稳健性差.准确率低.而逻辑

逻辑斯蒂回归模型

http://blog.csdn.net/hechenghai/article/details/46817031 主要参照统计学习方法.机器学习实战来学习.下文作为参考. 第一节中说了,logistic 回归和线性回归的区别是:线性回归是根据样本X各个维度的Xi的线性叠加(线性叠加的权重系数wi就是模型的参数)来得到预测值的Y,然后最小化所有的样本预测值Y与真实值y‘的误差来求得模型参数.我们看到这里的模型的值Y是样本X各个维度的Xi的线性叠加,是线性的. Y=WX (假设W>0),Y的大小是随

逻辑回归模型梯度下降法跟牛顿法比较

1.综述 机器学习的优化问题中,梯度下降法和牛顿法是常用的两种凸函数求极值的方法,他们都是为了求得目标函数的近似解.梯度下降的目的是直接求解目标函数极小值,而牛顿法则变相地通过求解目标函数一阶导为零的参数值,进而求得目标函数最小值.在逻辑回归模型的参数求解中,一般用改良的梯度下降法,也可以用牛顿法. 2 梯度下降法 2.1算法描述 1.确定误差范围和下降的步长,确定函数的导函数 2.while(|新值 -旧值| >误差) 3.       旧值=新值 4.       新值=初始值-步长*导函数

R in action读书笔记(11)-第八章:回归-- 选择“最佳”的回归模型

8.6 选择“最佳”的回归模型 8.6.1 模型比较 用基础安装中的anova()函数可以比较两个嵌套模型的拟合优度.所谓嵌套模型,即它的一 些项完全包含在另一个模型中 用anova()函数比较 > states<-as.data.frame(state.x77[,c("Murder","Population","Illiteracy","Income","Frost")]) > fit1