(学习网易云课堂Hadoop大数据实战笔记)
序列化在分布式环境的两大作用:进程间通信,永久存储。
Writable接口, 是根据 DataInput 和 DataOutput 实现的简单、有效的序列化对象.
MR的任意Value必须实现Writable接口:
MR的key必须实现WritableComparable接口,WritableComparable继承自Writable和Comparable接口:
(本节先讲自定义value值,下一节再讲自定义key值,根据key值进行自定义排序)
以一个例子说明,自定义数据类型(例子来源于学习的课程):
原始数据是由若干条下面数据组成:
数据格式及字段顺序如下:
现在要做的工作是以“手机号码”为关键字,计算同一个号码的upPackNum, downPackNum,upPayLoad,downPayLoad四个累加值。
运用MapReduce解决问题思路:
1、框架将数据分成<k1,v1>,k1是位置标记,v1表示一行数据;
2、map函数输入<k1,v1>,输入<k2,v2>,k2是选定数据的第1列(从0开始),v2是自定义的数据类型,包含第六、七、八、九列封装后的数据;
3、框架将<k2,v2>依据k2关键字进行map排序,然后进行combine过程,再进行Reduce段排序,得到<k2,list(v2...)>;
4、reduce函数处理<k2,list(v2...)>,以k2为关键字,计算list的内容。
要自定义的数据类型是Value值,因此要继承Writable接口,自定义数据类型如下:
import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.Writable; public class TrafficWritable implements Writable { long upPackNum, downPackNum,upPayLoad,downPayLoad; public TrafficWritable() { //这个构造函数不能省,否则报错 super(); // TODO Auto-generated constructor stub } public TrafficWritable(String upPackNum, String downPackNum, String upPayLoad, String downPayLoad) { super(); this.upPackNum = Long.parseLong(upPackNum); this.downPackNum = Long.parseLong(downPackNum); this.upPayLoad = Long.parseLong(upPayLoad); this.downPayLoad = Long.parseLong(downPayLoad); } @Override public void write(DataOutput out) throws IOException { //序列化 // TODO Auto-generated method stub out.writeLong(upPackNum); out.writeLong(downPackNum); out.writeLong(upPayLoad); out.writeLong(downPayLoad); } @Override public void readFields(DataInput in) throws IOException { //反序列化 // TODO Auto-generated method stub this.upPackNum=in.readLong(); this.downPackNum=in.readLong(); this.upPayLoad=in.readLong(); this.downPayLoad=in.readLong(); } @Override public String toString() { //不加toStirng函数,最后输出内存的地址 return upPackNum + "\t"+ downPackNum + "\t" + upPayLoad + "\t" + downPayLoad; } }
最后实现map函数和Reduce函数如下,基本框架和wordCount相同:
import java.io.IOException; import java.net.URI; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class TrafficCount { /** * @author nwpulisz * @date 2016.3.31 */ static final String INPUT_PATH="hdfs://192.168.255.132:9000/input"; static final String OUTPUT_PATH="hdfs://192.168.255.132:9000/output"; public static void main(String[] args) throws Throwable { // TODO Auto-generated method stub Configuration conf = new Configuration(); Path outPut_path= new Path(OUTPUT_PATH); Job job = new Job(conf, "TrafficCount"); //如果输出路径是存在的,则提前删除输出路径 FileSystem fileSystem = FileSystem.get(new URI(OUTPUT_PATH), conf); if(fileSystem.exists(outPut_path)) { fileSystem.delete(outPut_path,true); } FileInputFormat.setInputPaths(job, INPUT_PATH); FileOutputFormat.setOutputPath(job, outPut_path); job.setMapperClass(MyMapper.class); job.setReducerClass(MyReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(TrafficWritable.class); job.waitForCompletion(true); } static class MyMapper extends Mapper<LongWritable, Text, Text, TrafficWritable>{ protected void map(LongWritable k1, Text v1, Context context) throws IOException, InterruptedException { String[] splits = v1.toString().split("\t"); Text k2 = new Text(splits[1]); TrafficWritable v2 = new TrafficWritable(splits[6], splits[7], splits[8], splits[9]); context.write(k2, v2); } } static class MyReducer extends Reducer<Text, TrafficWritable, Text, TrafficWritable>{ protected void reduce(Text k2, Iterable<TrafficWritable> v2s, Context context ) throws IOException, InterruptedException { long upPackNum=0L, downPackNum=0L,upPayLoad=0L,downPayLoad=0L; for(TrafficWritable traffic: v2s) { upPackNum += traffic.upPackNum; downPackNum += traffic.downPackNum; upPayLoad += traffic.upPayLoad; downPayLoad += traffic.downPayLoad; } context.write(k2,new TrafficWritable(upPackNum+"",downPackNum+"",upPayLoad+"", downPayLoad+"")); } } }
最终输出结果如下:
附实验数据下载地址:https://yunpan.cn/cqcEy6QSzUEs7 访问密码 2fb1。数据来源:网易云课堂hadoop大数据实战