SoC嵌入式软件架构设计之五:可执行程序的重构

低端控制器对执行效率要求很高,成本敏感,因而SoC内置SRAM是紧缺资源。代码分块管理就是为了充分利用内存,提高内存的复用效率而提出的一种设计方法。代码分块管理不仅涉及到硬件,同样对操作系统和应用、驱动的设计都有要求,这些模块共同努力以使执行效率达到最高。

本节讲述代码分块(Bank)管理思想下可执行文件的重构,即对程序编译后的可执行文件进行重新组织、打包,以在加载阶段获得最高的执行效率,减少内存占用。要使执行效率高,意味着可执行文件的格式尽可能简单,解析执行文件的流程简单,相应地,解析过程代码量少,即能够减少内存的占用。

keil产生的Hex或者Bin,其实也是keil对axf调试文件进行抽取,重新打包生成。Hex和Bin可以通过烧写器下载到flash。GCC工具链会生成可执行格式ELF,也可以离线对ELF格式内容进行抽取,重新打包生产Hex格式,并烧写到flash中。本次讲述的是可执行文件存储在外存储设备(card,nand flash,硬盘)中,在运行前由操作系统将其加载到内存再执行这种情况。

要对工具链生成的可执行文件(如ELF)进行重构,自然需要熟悉该执行文件的格式,如ELF,里面会包括文件头,SECTION节,符号段,代码段,数据段,还有调试信息等等。而程序的运行往往只需要其中较少的段信息。可执行文件就是要得到必要的段的信息和数据,将不必要的通通删除,并且根据代码分块管理的特点进行自定义格式的编制。这里不再对ELF等标准执行文件进行分析(以后可能另写文章),只描述重构后的目标格式,看看什么段信息和数据是操作系统必要要知道和获取的。

1. 文件头

1)格式标识符,如应用,驱动等

2)版本号

3)常驻代码段在文件中偏移

4)常驻代码长度

5)常驻代码段在内存中的起始地址

6)常驻数据(.DATA)段在文件中偏移

7)常驻数据(.DATA)长度

8)常驻数据段(.DATA)在内存中的起始地址

9).bss段长度

10).bss段在内存中的起始地址

11)程序入口地址ENTRY:第一行代码的地址,不是main哦,是运行时库的一行代码地址

12)reserved,对齐到扇区或者1024字节。如果是驱动类型,则会增加两个字段:驱动入口地址和驱动退出地址。

2. 代码块头

1)第一个Bank组的头,按顺序是第一个Bank的块信息、第二个Bank的块信息、。。。第N个Bank的块信息。一个Bank组最大含有N个Bank,不够的填0.

2)第二个Bank组的头,按顺序是第一个Bank的块信息、第二个Bank的块信息、。。。第N个Bank的块信息。一个Bank组最大含有N个Bank,不够的填0.

.....

有几个Bank组由文件头的格式标识符来判定,由架构师事先约定。

每个Bank块的块信息包括:bank块数据(代码和数据)在文件中的偏移,Bank长度,BAnk对应的内存地址。

    3.常驻代码段数据,对齐扇区

    4.常驻数据段数据,对齐扇区

    5.第一组Bank的数据,对齐扇区,只记录真实的Bank数据,一个Bank组不够N个bank时不需补0.

6. 第二组Bank的数据,对齐扇区,只记录真实的Bank数据,一个Bank组不够N个bank时不需补0.

7. 最后一个组的Bank数据。

加载时解析该文件头,获得常驻代码段和数据段的信息,将两者加载到内存,对Bss段清0,然后读取到程序的ENTRY入口,跳到该地址执行即可,简单高效!

SoC嵌入式软件架构设计之五:可执行程序的重构

时间: 2024-10-12 16:21:50

SoC嵌入式软件架构设计之五:可执行程序的重构的相关文章

SoC嵌入式软件架构设计之五 :可执行程序的重构

低端控制器对执行效率要求很高,成本敏感,因而SoC内置SRAM是紧缺资源.代码分块管理就是为了充分利用内存,提高内存的复用效率而提出的一种设计方法.代码分块管理不仅涉及到硬件,同样对操作系统和应用.驱动的设计都有要求,这些模块共同努力以使执行效率达到最高. 本节讲述代码分块(Bank)管理思想下可执行文件的重构,即对程序编译后的可执行文件进行重新组织.打包,以在加载阶段获得最高的执行效率,减少内存占用.要使执行效率高,意味着可执行文件的格式尽可能简单,解析执行文件的流程简单,相应地,解析过程代码

SoC嵌入式软件架构设计之四:内存空间规划分配

本文继续阐述基于低端控制器CPU的SoC固件架构设计.第一节 SoC嵌入式软件架构设计之一:系统内存需求评估 讲述了系统内存需求的评估.这一节讲述内存空间的具体规划分配.CPU有两种体系结构:哈佛结构和冯诺依曼结构.哈佛结构是一种将程序指令存储和数据存储分开的存储器结构,如80251,代码空间与数据空间完全分开,独立编址:冯诺依曼结构是一种将程序指令存储器和数据存储器合并在一起的存储器结构,如MIPS,ARM等,其代码和数据空间是统一编址.这里就以冯诺依曼体系结构为例. 一.嵌入式系统软件分层

SoC嵌入式软件架构设计II:否MMU的CPU虚拟内存管理的设计与实现方法

大多数的程序代码是必要的时,它可以被加载到内存中运行.手术后,可直接丢弃或覆盖其他代码.我们PC然在同一时间大量的应用,能够整个线性地址空间(除了部分留给操作系统或者预留它用),能够觉得每一个应用程序都独占了整个虚拟地址空间(字长是32的CPU是4G的虚拟地址空间),但我们的物理内存仅仅是1G或者2G.即多个应用程序在同一时候竞争使用这块物理内存.其必定会导致某个时刻仅仅存在程序的某个片段在运行,也即是全部程序代码和数据分时复用物理内存空间-这就是内存管理单元(MMU)工作核心作用所在. 处理器

SoC嵌入式软件架构设计之四 :内存空间规划分配

本文继续阐述基于低端控制器CPU的SoC固件架构设计.第一节 SoC嵌入式软件架构设计之一:系统内存需求评估 讲述了系统内存需求的评估.这一节讲述内存空间的具体规划分配.CPU有两种体系结构:哈佛结构和冯诺依曼结构.哈佛结构是一种将程序指令存储和数据存储分开的存储器结构,如80251,代码空间与数据空间完全分开,独立编址:冯诺依曼结构是一种将程序指令存储器和数据存储器合并在一起的存储器结构,如MIPS,ARM等,其代码和数据空间是统一编址.这里就以冯诺依曼体系结构为例. 一.嵌入式系统软件分层

SoC嵌入式软件架构设计之三:代码分块(Bank)设计原则

上一节讲述了在没有MMU的CPU(如80251.MIPS M控制器系列.ARM cortex m系列)上实现虚拟内存管理的集成硬件设计方法,新设计的内存管理管理单元要实现虚拟内存管理还需要操作系统.代码分块(Bank)的支持,详见SoC嵌入式软件架构设计之二:没有MMU的CPU实现虚拟内存管理的设计方法.这里要阐述Bank设计的一些原则. Bank设计是为了实现不同时刻运行的Bank(代码块)运行在同一块内存上,所以在运行之前操作系统需要将已存在内存的代码/数据进行缓存处理,并加载将要运行的Ba

SoC嵌入式软件架构设计之七:嵌入式文件系统设计

嵌入式的系统区(system disk,SD)包括操作系统.驱动.中间件.应用和字库.UI资源等文件,本文讲述SD区的文件系统设计.文件系统最主要的目标是为了实现单个文件的定位和读写.因为一般代码都是不可自修改的,即量产之后不会有写操作,嵌入式系统的SD文件系统就是为了能够简单.高效地定位某个文件和读取文件中的数据.设计原则和要点有以下几方面: 1. 逻辑连续存储单个文件,以扇区对齐. SD区的单个代码和资源文件一般都不大,所以不必要像fat32文件系统那样用fat表把文件簇串起来,直接逻辑连续

SoC嵌入式软件架构设计之六:API设计方法

在嵌入式系统中,驱动都是以API的方式提供给应用进行调用.这里介绍嵌入式系统的API设计和管理方法. 驱动在系统中会按模块进行分类,例如按键驱动.LCD驱动.文件系统.card驱动.I2C驱动等等:每个模块又有多个接口,例如LCD驱动有光标定位.画点.画直线等,而文件系统有fread.fwrite.fseek.fopen等接口.以下举例将以文件系统的fopen为例,工具链为mips. 一.API设计方法 1. 驱动接口声明:extern FILE * fopen(const char * pat

SoC嵌入式软件架构设计之一:系统内存需求评估

内存是SoC(System on Chip,片上系统)集成设计的重要模块,是SoC中成本比重较大的部分.内存管理的软硬件设计是SoC软件架构设计的重要一环,架构设计师必须要在成本和效率中取得平衡,做到在节省内存的同时保证整个系统的性能.系统内存需求评估是对嵌入式软件架构师的最基本要求,同时也是其最重要的技能之一.一般在SoC项目立项的时候,架构师就要完成系统内存需求评估. 下面以一个多媒体电子解决方案中的SoC设计为原型,说明大致的评估流程: 1. 根据产品规格,对各个应用场景进行功能和性能分解

SoC嵌入式软件架构设计之二:虚拟内存管理原理、MMU硬件设计及代码分块管理

程序的大部分代码都可以在必要的时候才加载到内存去执行,运行完后可以被直接丢弃或者被其他代码覆盖.我们PC上同时跑着很多的应用程序,每个应用程序使用的虚拟地址空间几乎可以整个线性地址空间(除了部分留给操作系统或者预留它用),可以认为每个应用程序都独占了整个虚拟地址空间(字长是32的CPU是4G的虚拟地址空间),但我们的物理内存只是1G或者2G.即多个应用程序在同时竞争使用这块物理内存,其必然会导致某个时刻只存在程序的某个片段在执行,也即是所有程序代码和数据分时复用物理内存空间—这就是内存管理单元(