理解深度学习

1、现状:

深度学习现在非常热,各种会议都要和这个沾点边。百度大脑,谷歌大脑计划搞的都是这个。在一些领域取得了非常不错的效果,如图片识别,语音识别,在安全领域甚至还有识别加密的协议等。如图片,语音领域实验室准确率都超过了90%。

2、深度学习的本质

一个典型的机器学习样例如上,从开始的通过传感器(例如CMOS)来获得数据。然后经过预处理、特征提取、特征选择,再到推理、预测或者识别。最后一个部分,也就是机器学习的部分,绝大部分的工作是在这方面做的,也存在很多的paper和研究。

而中间的三部分,概括起来就是特征表达。良好的特征表达,对最终算法的准确性起了非常关键的作用,而且系统主要的计算和测试工作都耗在这一大部分。但,这块实际中一般都是人工完成的。靠人工提取特征。

然而,手工地选取特征是一件非常费力、启发式(需要专业知识)的方法,能不能选取好很大程度上靠经验和运气,而且它的调节需要大量的时间。既然手工选取特征不太好,那么能不能自动地学习一些特征呢?答案是能!                               Deep Learning就是用来干这个事情的,看它的一个别名UnsupervisedFeature Learning,就可以顾名思义了,   Unsupervised的意思就是不要人参与特征的选取过程。

深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。因此,“深度模型”是手段,“特征学习”是目的。区别于传统的浅层学习,深度学习的不同在于:1)强调了模型结构的深度,通常有5层、6层,甚至10多层的隐层节点;2)明确突出了特征学习的重要性,也就是说,通过逐层特征变换,将样本在原空间的特征表示变换到一个新特征空间,从而使分类或预测更加容易。与人工规则构造特征的方法相比,利用大数据来学习特征,更能够刻画数据的丰富内在信息。

3、深度学习和传统神经网络的关系

Deep learning本身算是machine learning的一个分支,简单可以理解为neural network的发展。大约二三十年前,neural network曾经是ML领域特别火热的一个方向,但是后来确慢慢淡出了,原因包括以下几个方面:

1)比较容易过拟合,参数比较难tune,而且需要不少trick;

2)训练速度比较慢,在层次比较少(小于等于3)的情况下效果并不比其它方法更优;

所以中间有大约20多年的时间,神经网络被关注很少,这段时间基本上是SVM和boosting算法的天下。但是,一个痴心的老先生Hinton,他坚持了下来,并最终(和其它人一起Bengio、Yann.lecun等)提成了一个实际可行的deep learning框架。

Deep learning与传统的神经网络之间有相同的地方也有很多不同。

二者的相同在于deep learning采用了神经网络相似的分层结构,系统由包括输入层、隐层(多层)、输出层组成的多层网络,只有相邻层节点之间有连接,同一层以及跨层节点之间相互无连接,每一层可以看作是一个logistic regression模型;这种分层结构,是比较接近人类大脑的结构的。

而为了克服神经网络训练中的问题,DL采用了与神经网络很不同的训练机制。传统神经网络中,采用的是back propagation的方式进行,简单来讲就是采用迭代的算法来训练整个网络,随机设定初值,计算当前网络的输出,然后根据当前输出和label之间的差去改变前面各层的参数,直到收敛(整体是一个梯度下降法)。而deep learning整体上是一个layer-wise的训练机制。这样做的原因是因为,如果采用back propagation的机制,对于一个deep network(7层以上),残差传播到最前面的层已经变得太小,出现所谓的gradient diffusion(梯度扩散)。

5、总结

深度学习是关于自动学习要建模的数据的潜在(隐含)分布的多层(复杂)表达的算法。换句话来说,深度学习算法自动的提取分类需要的低层次或者高层次特征。高层次特征,一是指该特征可以分级(层次)地依赖其他特征,例如:对于机器视觉,深度学习算法从原始图像去学习得到它的一个低层次表达,例如边缘检测器,小波滤波器等,然后在这些低层次表达的基础上再建立表达,例如这些低层次表达的线性或者非线性组合,然后重复这个过程,最后得到一个高层次的表达。

Deep learning能够得到更好地表示数据的feature,同时由于模型的层次、参数很多,capacity足够,因此,模型有能力表示大规模数据,所以对于图像、语音这种特征不明显(需要手工设计且很多没有直观物理含义)的问题,能够在大规模训练数据上取得更好的效果。此外,从模式识别特征和分类器的角度,deep learning框架将feature和分类器结合到一个框架中,用数据去学习feature,在使用中减少了手工设计feature的巨大工作量(这是目前工业界工程师付出努力最多的方面),因此,不仅仅效果可以更好,而且,使用起来也有很多方便之处,因此,是十分值得关注的一套框架,每个做ML的人都应该关注了解一下。

当然,deep learning本身也不是完美的,也不是解决世间任何ML问题的利器,不应该被放大到一个无所不能的程度。

时间: 2024-10-06 20:35:23

理解深度学习的相关文章

利用Theano理解深度学习——Multilayer Perceptron

一.多层感知机MLP 1.MLP概述 对于含有单个隐含层的多层感知机(single-hidden-layer Multi-Layer Perceptron, MLP),可以将其看成是一个特殊的Logistic回归分类器,这个特殊的Logistic回归分类器首先通过一个非线性变换Φ(non-linear transformation)对样本的输入进行非线性变换,然后将变换后的值作为Logistic回归的输入.非线性变换的目的是将输入的样本映射到一个空间,在该空间中,这些样本是线性可分的.这个中间层

干货 | 深入理解深度学习中的激活函数

理解深度学习中的激活函数 在这个文章中,我们将会了解几种不同的激活函数,同时也会了解到哪个激活函数优于其他的激活函数,以及各个激活函数的优缺点. 1. 什么是激活函数? 生物神经网络是人工神经网络的起源.然而,人工神经网络(ANNs)的工作机制与大脑的工作机制并不是十分的相似.不过在我们了解为什么把激活函数应用在人工神经网络中之前,了解一下激活函数与生物神经网络的关联依然是十分有用的. 一个典型神经元的物理结构由细胞体.向其他神经元发送信息的轴突以及从其他神经元接受信号或信息的树突组成. ? 图

从Image Caption Generation理解深度学习

0. 前面的话 建丁让我写一篇深度学习相关小文章,目标读者是国内的开发者.刚接到这个任务时我是颇为忐忑的,写文章要讲究厚积薄发,如果“水之积也不厚”,“则其负大舟也无力”.因为我自知水平很有限,又不是在学校和科研机构做研究,只不过因为工作和个人的兴趣,对深度学习有一点点粗浅的了解,所以担心写出来的东西不但于人无益,甚至还让人误入歧途.但后来又一想,如果把自己作为一个深度学习的学习者,和对它感兴趣的普通开发者分享一些学习的经历,包括学习过程中遇到的问题,可能也是有一些意义的.毕竟读论文或者听学术大

如何正确理解深度学习(Deep Learning)的概念

现在深度学习在机器学习领域是一个很热的概念,不过经过各种媒体的转载播报,这个概念也逐渐变得有些神话的感觉:例如,人们可能认为,深度学习是一种能够模拟出人脑的神经结构的机器学习方式,从而能够让计算机具有人一样的智慧:而这样一种技术在将来无疑是前景无限的.那么深度学习本质上又是一种什么样的技术呢? 深度学习是什么 深度学习是机器学习领域中对模式(声音.图像等等)进行建模的一种方法,它也是一种基于统计的概率模型.在对各种模式进行建模之后,便可以对各种模式进行识别了,例如待建模的模式是声音的话,那么这种

如何理解深度学习中的Transposed Convolution?

知乎上的讨论:https://www.zhihu.com/question/43609045?sort=created 不过看的云里雾里,越看越糊涂. 直到看到了这个:http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html#transposed-convolution-arithmetic 讲的非常清楚非常好

怎样找到一份深度学习的工作(附学习材料,资源与建议)

原文地址:How to get a job in deep learning 原文翻译与校对:@戴丹 && @胡杨 && 寒小阳 时间:2016年10月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/52777661 声明:版权所有,转载请联系作者并注明出 如果你是一个软件工程师(或者你现在正在学习这一方面),你肯定有机会听说过深度学习(有时候深度学习缩写为"DL").它现在是一个热门.且快速

深度学习在图像识别中的研究进展与展望

深度学习在图像识别中的研究进展与展望 深度学习是近十年来人工智能领域取得的最重要的突破之一.它在语音识别.自然语言处理.计算机视觉.图像与视频分析.多媒体等诸多领域都取得了巨大成功.本文将重点介绍深度学习在物体识别.物体检测.视频分析的最新研究进展,并探讨其发展趋势. 1.深度学习发展历史的回顾 现在的深度学习模型属于神经网络.神经网络的历史可以追溯到上世纪四十年代,曾经在八九十年代流行.神经网络试图通过大脑认知的机理,解决各种机器学习的问题.1986年Rumelhart.Hinton和Will

神经网络浅讲:从神经元到深度学习

神经网络是一门重要的机器学习技术.它是目前最为火热的研究方向--深度学习的基础.学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术. 本文以一种简单的,循序的方式讲解神经网络.适合对神经网络了解不多的同学.本文对阅读没有一定的前提要求,但是懂一些机器学习基础会更好地帮助理解本文. 神经网络是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术.人脑中的神经网络是一个非常复杂的组织.成人的大脑中估计有1000亿个神经元之多. 图1 人脑神经网络 那么机

深度学习成长的烦恼

深度学习成长的烦恼 [编者按]深度学习尽管对当前人工智能的发展作用很大,然而深度学习工作者并非一帆风顺.Chris Edwards发表于Communications of the ACM的这篇文章,通过不同的深度学习研究人员的现身说法,列举了深度学习在不同场景下面临的一些挑战以及目前的解决方案.CSDN翻译此文,希望对国内深度学习从业者有借鉴意义. 理论和计算机硬件的进步促使神经网络成为在线服务的核心部分,如微软的Bing,采用神经网络驱动图像搜索和语音识别系统.这些公司提供这样的能力是希望在未