大数据性能调优之HBase的RowKey设计

Hbase是三维有序存储的,通过rowkey(行键),column key(column family和qualifier)和TimeStamp(时间戳)这个三个维度可以对HBase中的数据进行快速定位。

HBase中rowkey可以唯一标识一行记录,在HBase查询的时候,有以下几种方式:

  1. 通过get方式,指定rowkey获取唯一一条记录
  2. 通过scan方式,设置startRow和stopRow参数进行范围匹配
  3. 全表扫描,即直接扫描整张表中所有行记录
  4. (较新的hbase还可以通过column和values 进行索引,但是不走rowkey索引速度比较慢)

  

rowkey长度原则

rowkey是一个二进制码流,可以是任意字符串,最大长度 64kb ,实际应用中一般为10-100bytes,以 byte[] 形式保存,一般设计成定长。

建议越短越好,不要超过16个字节,原因如下:

  1. 数据的持久化文件HFile中是按照KeyValue存储的,如果rowkey过长,比如超过100字节,1000w行数据,光rowkey就要占用100*1000w=10亿个字节,将近1G数据,这样会极大影响HFile的存储效率;
  2. MemStore将缓存部分数据到内存,如果rowkey字段过长,内存的有效利用率就会降低,系统不能缓存更多的数据,这样会降低检索效率。
  3. 目前操作系统都是64位系统,内存8字节对齐,控制在16个字节,8字节的整数倍利用了操作系统的最佳特性

rowkey散列原则

如果rowkey按照时间戳的方式递增,不要将时间放在二进制码的前面,建议将rowkey的高位作为散列字段,由程序随机生成,低位放时间字段,这样将提高数据均衡分布在每个RegionServer,以实现负载均衡的几率。如果没有散列字段,首字段直接是时间信息,所有的数据都会集中在一个RegionServer上,这样在数据检索的时候负载会集中在个别的RegionServer上,造成热点问题,会降低查询效率。

rowkey唯一原则

必须在设计上保证其唯一性,rowkey是按照字典顺序排序存储的,因此,设计rowkey的时候,要充分利用这个排序的特点,将经常读取的数据存储到一块,将最近可能会被访问的数据放到一块。

什么是热点

HBase中的行是按照rowkey的字典顺序排序的,这种设计优化了scan操作,可以将相关的行以及会被一起读取的行存取在临近位置,便于scan。然而糟糕的rowkey设计是热点的源头。 热点发生在大量的client直接访问集群的一个或极少数个节点(访问可能是读,写或者其他操作)。大量访问会使热点region所在的单个机器超出自身承受能力,引起性能下降甚至region不可用,这也会影响同一个RegionServer上的其他region,由于主机无法服务其他region的请求。 设计良好的数据访问模式以使集群被充分,均衡的利用。

为了避免写热点,设计rowkey使得不同行在同一个region,但是在更多数据情况下,数据应该被写入集群的多个region,而不是一个。

下面是一些常见的避免热点的方法以及它们的优缺点:

加盐

这里所说的加盐不是密码学中的加盐,而是在rowkey的前面增加随机数,具体就是给rowkey分配一个随机前缀以使得它和之前的rowkey的开头不同。分配的前缀种类数量应该和你想使用数据分散到不同的region的数量一致。加盐之后的rowkey就会根据随机生成的前缀分散到各个region上,以避免热点。

哈希

哈希会使同一行永远用一个前缀加盐。哈希也可以使负载分散到整个集群,但是读却是可以预测的。使用确定的哈希可以让客户端重构完整的rowkey,可以使用get操作准确获取某一个行数据

反转

第三种防止热点的方法时反转固定长度或者数字格式的rowkey。这样可以使得rowkey中经常改变的部分(最没有意义的部分)放在前面。这样可以有效的随机rowkey,但是牺牲了rowkey的有序性。

反转rowkey的例子以手机号为rowkey,可以将手机号反转后的字符串作为rowkey,这样的就避免了以手机号那样比较固定开头导致热点问题

时间戳反转

一个常见的数据处理问题是快速获取数据的最近版本,使用反转的时间戳作为rowkey的一部分对这个问题十分有用,可以用 Long.Max_Value - timestamp 追加到key的末尾,例如 [key][reverse_timestamp] , [key] 的最新值可以通过scan [key]获得[key]的第一条记录,因为HBase中rowkey是有序的,第一条记录是最后录入的数据。

比如需要保存一个用户的操作记录,按照操作时间倒序排序,在设计rowkey的时候,可以这样设计

[userId反转][Long.Max_Value - timestamp],在查询用户的所有操作记录数据的时候,直接指定反转后的userId,startRow是[userId反转][000000000000],stopRow是[userId反转][Long.Max_Value - timestamp]

如果需要查询某段时间的操作记录,startRow是[user反转][Long.Max_Value - 起始时间],stopRow是[userId反转][Long.Max_Value - 结束时间](达到热点分散,查询又可以支持多样性)

其他一些建议

  • 尽量减少行和列的大小在HBase中,value永远和它的key一起传输的。当具体的值在系统间传输时,它的rowkey,列名,时间戳也会一起传输。如果你的rowkey和列名很大,甚至可以和具体的值相比较,那么你将会遇到一些有趣的问题。HBase storefiles中的索引(有助于随机访问)最终占据了HBase分配的大量内存,因为具体的值和它的key很大。可以增加block大小使得storefiles索引再更大的时间间隔增加,或者修改表的模式以减小rowkey和列名的大小。压缩也有助于更大的索引。
  • 列族尽可能越短越好,最好是一个字符
  • 冗长的属性名虽然可读性好,但是更短的属性名存储在HBase中会更好

rowkey长度原则

rowkey是一个二进制码流,可以是任意字符串,最大长度 64kb ,实际应用中一般为10-100bytes,以 byte[] 形式保存,一般设计成定长。

建议越短越好,不要超过16个字节,原因如下:

  1. 数据的持久化文件HFile中是按照KeyValue存储的,如果rowkey过长,比如超过100字节,1000w行数据,光rowkey就要占用100*1000w=10亿个字节,将近1G数据,这样会极大影响HFile的存储效率;
  2. MemStore将缓存部分数据到内存,如果rowkey字段过长,内存的有效利用率就会降低,系统不能缓存更多的数据,这样会降低检索效率。
  3. 目前操作系统都是64位系统,内存8字节对齐,控制在16个字节,8字节的整数倍利用了操作系统的最佳特性
时间: 2024-10-09 22:24:56

大数据性能调优之HBase的RowKey设计的相关文章

[大数据性能调优] 第一章:性能调优的本质、Spark资源使用原理和调优要点分析

本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质是什么,以及 Spark 在性能调优部份的要点,这两点让直式进入性能调优都是一个至关重要的问题,它的本质限制了我们调优到底要达到一个什么样的目标或者说我们是从什么本源上进行调优.希望这篇文章能为读者带出以下的启发: 了解大数据性能调优的本质 了解 Spark 性能调优要点分析 了解 Spark 在资

老李分享:大数据性能调优案例

老李分享:大数据性能调优案例 1.“空间换时间”以及“内存中处理数据” 比如user_id.csv文件中有20万个不同的user_id,根据user_id去查其对应的用户最近发表的一篇帖子,取出post_id,post_title.post_time和user_id(post表中查,post表中有一列是user_id,表示帖子所属者),而帖子数目有大概两百万,那么如何处理呢?我的解决方案是:A. 先将post表post_id,post_title.post_time和user_id这四列导出到p

[大数据性能调优] 第二章:彻底解密Spark的HashShuffle

本課主題 Shuffle 是分布式系统的天敌 Spark HashShuffle介绍 Spark Consolidated HashShuffle介绍 Shuffle 是如何成为 Spark 性能杀手 Shuffle 性能调优思考 Spark HashShuffle 源码鉴赏 引言 Spark HashShuffle 是它以前的版本,现在1.6x 版本默应是Sort-Based Shuffle,那为什么要讲 HashShuffle 呢,因为有分布式就一定会有 Shuffle,而且 HashShu

MySQL插入数据性能调优

插入数据性能调优总结: 1.SQL插入语句调优 2.如果是InnoDB引擎的话,尝试开启事务,批量提交 3.调整MySQl数据库配置 参考: 百度空间 - MySQL插入数据性能调优 CSDN - MySQL插入大量数据调优

java架构师课程、性能调优、高并发、tomcat负载均衡、大型电商项目实战、高可用、高可扩展、数据库架构设计、Solr集群与应用、分布式实战、主从复制、高可用集群、大数据

15套Java架构师详情 * { font-family: "Microsoft YaHei" !important } h1 { background-color: #006; color: #FF0 } 15套java架构师.集群.高可用.高可扩展.高性能.高并发.性能优化.Spring boot.Redis.ActiveMQ.Nginx.Mycat.Netty.Jvm大型分布式项目实战视频教程 视频课程包含: 高级Java架构师包含:Spring boot.Spring  clo

hbase性能调优(1)

hbase性能调优 标签: hbase 性能调优 | 发表时间:2014-05-17 15:10 | 作者:无尘道长 分享到: 出处:http://www.iteye.com 一.服务端调优 1.参数配置 1).hbase.regionserver.handler.count:该设置决定了处理RPC的线程数量,默认值是10,通常可以调大,比如:150,当请求内容很大(上MB,比如大的put.使用缓存的scans)的时候,如果该值设置过大则会占用过多的内存,导致频繁的GC,或者出现OutOfMem

spark性能优化:数据倾斜调优

调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题--数据倾斜,此时Spark作业的性能会比期望差很多.数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能. 数据倾斜发生时的现象 1.绝大多数task执行得都非常快,但个别task执行极慢.比如,总共有1000个task,997个task都在1分钟之内执行完了,但是剩余两三个task却要一两个小时.这种情况很常见. 2.原本能够正常执行的Spark作业,某天突然报出OOM(内存溢出)异常,观察异常

Spark数据本地化-->如何达到性能调优的目的

Spark数据本地化-->如何达到性能调优的目的 1.Spark数据的本地化:移动计算,而不是移动数据 2.Spark中的数据本地化级别: TaskSetManager 的 Locality Levels 分为以下五个级别: PROCESS_LOCAL  NODE_LOCAL NO_PREF    RACK_LOCAL ANY PROCESS_LOCAL   进程本地化:task要计算的数据在同一个Executor中     NODE_LOCAL    节点本地化:速度比 PROCESS_LOC

MySQL性能调优与架构设计——第 14 章 可扩展性设计之数据切分

第 14 章 可扩展性设计之数据切分 前言 通过 MySQL Replication 功能所实现的扩展总是会受到数据库大小的限制,一旦数据库过于庞大,尤其是当写入过于频繁,很难由一台主机支撑的时候,我们还是会面临到扩展瓶颈.这时候,我们就必须许找其他技术手段来解决这个瓶颈,那就是我们这一章所要介绍恶的数据切分技术. 14.1 何谓数据切分 可能很多读者朋友在网上或者杂志上面都已经多次见到关于数据切分的相关文章了,只不过在有些文章中称之为数据的 Sharding.其实不管是称之为数据的 Shard