Linux下程序运行时内存状态及相应查看工具

最近在解决一个编译问题时,一直在考虑一个问题,那就是Linux下可执行程序运行时内存是什么状态,是按照什么方式分配内存并运行的。查看了一下资料,就此总结一下,众所周知,linux下内存管理是通过虚存管理的,在分配内存是并非在物理内存开辟了一段空间,而是在使用时才分配的,而且是通过段页式管理。以上比较废话,开始看看程序运行时内存会是什么状态。

在linux下内存分配是以页为单位的,而页是通过段管理,各个段之间是独立的,方便管理。linux程序运行时,可以分为以下几个内存段:

一、BSS段 (bss segment)通常是指用来存放程序中未初始化的全局变量的一块内存区域。BSS是英文Block
Started by Symbol的简称。BSS段属于静态内存分配。

该段用于存储未初始化的全局变量或者是默认初始化为0的全局变量,它不占用程序文件的大小,但是占用程序运行时的内存空间。

#define DEBUG "debug"

int space[1024][1024];

int main()
{
  char *a = DEBUG;
  return 1;
}

上面声明了一个space的二维数组,是一个全局变量,没有被初始化,通过nm命令可以查看程序中的符号信息如下:

0000000000600660 d _DYNAMIC
00000000006007f8 d _GLOBAL_OFFSET_TABLE_
0000000000400578 R _IO_stdin_used
                 w _Jv_RegisterClasses
0000000000600640 d __CTOR_END__
0000000000600638 d __CTOR_LIST__
0000000000600650 D __DTOR_END__
0000000000600648 d __DTOR_LIST__
0000000000400630 r __FRAME_END__
0000000000600658 d __JCR_END__
0000000000600658 d __JCR_LIST__
000000000060081c A __bss_start
0000000000600818 D __data_start
0000000000400530 t __do_global_ctors_aux
00000000004003e0 t __do_global_dtors_aux
0000000000400580 R __dso_handle
                 w __gmon_start__
0000000000600634 d __init_array_end
0000000000600634 d __init_array_start
0000000000400490 T __libc_csu_fini
00000000004004a0 T __libc_csu_init
                 U [email protected]@GLIBC_2.2.5
000000000060081c A _edata
0000000000a00840 A _end
0000000000400568 T _fini
0000000000400358 T _init
0000000000400390 T _start
00000000004003bc t call_gmon_start
0000000000600820 b completed.6347
0000000000600818 W data_start
0000000000600828 b dtor_idx.6349
0000000000400450 t frame_dummy
0000000000400474 T main
0000000000600840 B space

最后一行的B表示是BSS段,也就表示space是存在于BSS段中的。

二、data段 该段用于存储初始化的全局变量,初始化为0的全局变量出于编译优化的策略还是被保存在BSS段,对上面的程序做一下更改就可以看到是如何分配的了。

#define DEBUG "debug"

int space[1024][1024];
int data = 1;
int no_data = 0;

int main()
{
  char *a = DEBUG;
  return 1;
}

使用nm查看后

0000000000600660 d _DYNAMIC
00000000006007f8 d _GLOBAL_OFFSET_TABLE_
0000000000400578 R _IO_stdin_used
                 w _Jv_RegisterClasses
0000000000600640 d __CTOR_END__
0000000000600638 d __CTOR_LIST__
0000000000600650 D __DTOR_END__
0000000000600648 d __DTOR_LIST__
0000000000400630 r __FRAME_END__
0000000000600658 d __JCR_END__
0000000000600658 d __JCR_LIST__
0000000000600820 A __bss_start
0000000000600818 D __data_start
0000000000400530 t __do_global_ctors_aux
00000000004003e0 t __do_global_dtors_aux
0000000000400580 R __dso_handle
                 w __gmon_start__
0000000000600634 d __init_array_end
0000000000600634 d __init_array_start
0000000000400490 T __libc_csu_fini
00000000004004a0 T __libc_csu_init
                 U [email protected]@GLIBC_2.2.5
0000000000600820 A _edata
0000000000a00840 A _end
0000000000400568 T _fini
0000000000400358 T _init
0000000000400390 T _start
00000000004003bc t call_gmon_start
0000000000600820 b completed.6347
000000000060081c D data
0000000000600818 W data_start
0000000000600828 b dtor_idx.6349
0000000000400450 t frame_dummy
0000000000400474 T main
0000000000600830 B no_data
0000000000600840 B space

可以看到变量data被分配在data段,而被初始化为0的no_data被分配在了BSS段。

三、.rodata段

该段也叫常量区,用于存放常量数据,ro就是Read Only之意。但是注意并不是所有的常量都是放在常量数据段的,其特殊情况如下:

1)有些立即数与指令编译在一起直接放在代码段。

int main()
{
  int a = 10;
  return 1;
}

a是常量,但是它没有被放入常量区,而是在指令中直接通过立即数赋值

2)对于字符串常量,编译器会去掉重复的常量,让程序的每个字符串常量只有一份。

char *str = "123456789";
char *str1 = "helloworld";

int main()
{
  char* a = "helloworld";
  char b[10] = "helloworld";
  return 1;
}

汇编代码如下:

                .file   "hello.c"
.globl str
        .section        .rodata
.LC0:
        .string "123456789"
        .data
        .align 8
        .type   str, @object
        .size   str, 8
str:
        .quad   .LC0
.globl str1
        .section        .rodata
.LC1:
        .string "helloworld"
        .data
        .align 8
        .type   str1, @object
        .size   str1, 8
str1:
        .quad   .LC1
        .text
.globl main
        .type   main, @function
main:
.LFB0:
        .cfi_startproc
        pushq   %rbp
        .cfi_def_cfa_offset 16
        .cfi_offset 6, -16
        movq    %rsp, %rbp
        .cfi_def_cfa_register 6
        movq    $.LC1, -8(%rbp)
        movl    $1819043176, -32(%rbp)
        movl    $1919907695, -28(%rbp)
        movw    $25708, -24(%rbp)
        movl    $1, %eax
        leave
        .cfi_def_cfa 7, 8
        ret
        .cfi_endproc
.LFE0:
        .size   main, .-main
        .ident  "GCC: (GNU) 4.4.6 20110731 (Red Hat 4.4.6-3)"
        .section        .note.GNU-stack,"",@progbits

可以看到str1和a同时指向.rodata段中同一个LC1,而是用数组初始化的字符串常量是没有放入常量区的,另外用const修饰的全局变量是放入常量区的,但是使用cons修饰的局部变量只是设置为只读起到防止修改的效果,没有放入常量区。

3)有些系统中rodata段是多个进程共享的,目的是为了提高空间的利用率。

四、text段

text段是用于存放程序代码的,编译时确定,只读。更进一步讲是存放处理器的机器指令,当各个源文件单独编译之后生成目标文件,经连接器链接各个目标文件并解决各个源文件之间函数的引用,与此同时,还得将所有目标文件中的.text段合在一起,但不是简单的将它们“堆”在一起就完事,还需要处理各个段之间的函数引用问题。

五、stack段

也就是栈段,常说的堆栈段之一,是由系统负责申请释放,其操作方式类似stack,用于存储参数变量及局部变量,其实函数的执行也是stack的方式,所以才有了递归

六、heap段

也就是俗称的堆,它由用户申请和释放,申请时至少分配虚存,当真正存储数据时才分配相应的实存,释放时也并非立即释放实存,而是可能被重复利用,待后续会再仔细介绍相关的知识。

可以看到堆和栈的内存增长方向是相反的,后续会对linux的内存管理做详细的介绍

时间: 2024-10-29 19:13:30

Linux下程序运行时内存状态及相应查看工具的相关文章

在Linux下程序运行时修改变量的值

1 #include <stdio.h> 2 #include <stdlib.h> 3 4 void bug() 5 { 6      system("reboot"); 7      exit(0); 8 } 9 int stack_test(int a,int b) 10 { 11         //int *p=&a; 12         // p--; 13         // *p=bug; 14         printf(&quo

程序运行时内存管理

1,管理运行阶段内存空间分配 malloc()/new; int *pn = new int(存储的类型,内存根据此设定相应存储字节的内存) pn是内存地址(所以 当声明一个变量的指针变量时没初始化,声明后再来初始化则pn 接收的应该是变量在内存中的地址 &VariableName); *pn是存储在内存的值 用于给所指向内存中的变量赋值; 为一个数据对象(结构,基本类型)获得并指定分配内存格式 typeName pointer_name = new typeName; 指定需要什么样的内存和用

获取java程序运行时内存信息

由于最近想自己动手测试一下String和StringBuffer的效率问题,需要获取程序运行时的内存占中信息,于是上网查了一下,根据查到的资料写了个程序,发现结果有问题,才发现查到的资料是错误的.所以在这里跟大家分享一下获取内存占用的正确方法 错误的方法 //程序开始时:(先调用一下垃圾回收,但是不一定立即执行) Runtime.getRuntime().gc(); long initm=Runtime.getRuntime().freeMemory(); //程序结束时: Runtime.ge

程序运行时三种内存分配策略

按照编译原理的观点,程序运行时的内存分配有三种策略,分别是静态的,栈式的,和堆式的. 静态存储分配是指在编译时就能确定每个数据目标在运行时刻的存储空间需求,因而在编译时就可以给他们分配固定的内存空间.这种分配策略要求程序代码中不允许有可变数据结构(比如可变数组)的存在,也不允许有嵌套或者递归的结构出现,因为它们都会导致编译程序无法计算准确的存储空间需求. 栈式存储分配也可称为动态存储分配,是由一个类似于堆栈的运行栈来实现的.和静态存储分配相反,在栈式存储方案中,程序对数据区的需求在编译时是完全未

内存的划分 &amp; 程序代码运行时内存工作流程

内存的划分: 1,寄存器. 2,本地方法区. 3,方法区. 4,栈内存. 存储的都是局部变量. 而且变量所属的作用域一旦结束,该变量就自动释放. 5,堆内存. 存储是数组和对象(其实数组就是对象) ,凡是new建立的都在堆中. 特点: 1)每一个实体都有首地址值. 2)堆内存中的每一个变量都有默认初始化值,根据类型的不同而不同.整数是0,小数0.0或者0.0f,boolean类型是false,char类型是 '\u0000',引用数据类型是NULL 3)垃圾回收机制. 全局变量和局部变量的区别:

程序运行时的内存分配情况

以下内容来自<C++编程实战宝典> 变量和函数占用的内存是系统在程序运行时为程序分配的,但并不是所有的变量和函数都被分配在同一块内存区域中.对于一个C++程序来说,系统一般采用3种方式为程序分配内存,下面将分别介绍这3种方式. (1)从静态存储区域分配 这部分内存在程序编译的时候就已经分配好,并且这块内存在程序的整个运行期间都存在.例如在函数外定义的全局变量,以及在创建时使用static修饰符的变量.在该区域存储的内容一般是全局变量,其中存储在数据段中的全局变量通常已经被初始化. (2)在栈上

[转]JVM运行时内存结构

目录[-] 1.为什么会有年轻代 2.年轻代中的GC 3.一个对象的这一辈子 4.有关年轻代的JVM参数 1.为什么会有年轻代 我们先来屡屡,为什么需要把堆分代?不分代不能完成他所做的事情么?其实不分代完全可以,分代的唯一理由就是优化GC性能.你先想想,如果没有分代,那我们所有的对象都在一块,GC的时候我们要找到哪些对象没用,这样就会对堆的所有区域进行扫描.而我们的很多对象都是朝生夕死的,如果分代的话,我们把新创建的对象放到某一地方,当GC的时候先把这块存“朝生夕死”对象的区域进行回收,这样就会

4,原型模式(Prototype Pattern)实际上就是动态抽取当前对象运行时的状态。

原型模式(Prototype Pattern)  实际上就是动态抽取当前对象运行时的状态. Prototype模式是一种对象创建型模式,它采取复制原型对象的方法来创建对象的实例.使用Prototype模式创建的实例,具有与原型一样的数据. 1)由原型对象自身创建目标对象.也就是说,对象创建这一动作发自原型对象本身. 2)目标对象是原型对象的一个克隆.也就是说,通过Prototype模式创建的对象,不仅仅与原型对象具有相同的结构,还与原型对象具有相同的值. 3)根据对象克隆深度层次的不同,有浅度克

linux下安装Oracle时交换空间不足的解决方法

摘:linux下安装Oracle时交换空间不足的解决方法 linux上安装Oracle时交换空间不足的解决办法 增加交换空间有两种方法: 严格的说,在系统安装完后只有一种方法可以增加swap,那就是本文的第二种方法, 至于第一种方法应该是安装系统时设置交换区. 1.使用分区: 在安装OS时划分出专门的交换分区,空间大小要事先规划好,启动系统时自动进行mount. 这种方法只能在安装OS时设定,一旦设定好不容易改变,除非重装系统. 2.使用swapfile:(或者是整个空闲分区) 新建临时swap