POJ 1459 Power Network 经典网络流构图问题 最大流,EK算法

题目链接:POJ 1459 Power Network


Power Network

Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 23347   Accepted: 12231

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount
0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power
transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of
Con.

An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y.
The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets
(u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set
ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can
occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
         (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
         (0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second
data set encodes the network from figure 1.

Source

Southeastern Europe 2003

题意:

一个电网包含n个结点,这些结点通过电线连接。

结点一共有三种:

(1)电站:产生电能和传输电能

(2)消费者:消耗电能,也可传输电能

(3)调度站:不产生电能,不消耗电能,只传输电能。

现在要求最大消费电能。电站和消费者有多个。

分析:

新加入一个点作为源点,向每一个电站引一条弧,权值为最大生产电量

新加入一个点作为汇点,每个消费者都向它引一条弧,权值为最大消耗电量。

其他所有点不管是何种都可以看做是调度站,即进入等于输出。

构图完成,用最大流算法求解,本题暂用EK算法,复杂度较高。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;

#define maxn 110
#define INF 0x3f3f3f3f
int ans, s, t, n;
int a[maxn], pre[maxn];
int flow[maxn][maxn];
int cap[maxn][maxn];

void Edmonds_Karp()
{
    queue<int> q;
    memset(flow, 0, sizeof(flow));
    ans = 0;
    while(1)
    {
        memset(a, 0, sizeof(a));
        a[s] = INF;
        q.push(s);
        while(!q.empty())   //bfs找增广路径
        {
            int u = q.front();
            q.pop();
            for(int v = 0; v < n; v++)
                if(!a[v] && cap[u][v] > flow[u][v])
                {
                    pre[v] = u;
                    q.push(v);
                    a[v] = min(a[u], cap[u][v]-flow[u][v]);
                }
        }
        if(a[t] == 0) break;
        for(int u = t; u != s; u = pre[u])  //改进网络流
        {
            flow[pre[u]][u] += a[t];
            flow[u][pre[u]] -= a[t];
        }
        ans += a[t];
    }
}

int main()
{
    //freopen("poj_1459.txt", "r", stdin);
    int m, u, v, c, np, nc;
    while(~scanf("%d%d%d%d", &n, &np, &nc, &m))
    {
        s = n, t = n+1;
        n += 2;
        //cout << s << " " << t << " " << n << endl;
        memset(cap, 0, sizeof(cap));
        while(m--)
        {
            while(getchar() !='(');
            scanf("%d,%d)%d", &u, &v, &c);
            cap[u][v] = c;
        }
        while(np--)
        {
            while(getchar() != '(');
            scanf("%d)%d", &v, &c);
            cap[s][v] = c;
        }
        while(nc--)
        {
            while(getchar() != '(');
            scanf("%d)%d", &u, &c);
            cap[u][t] = c;
        }
        /*
        for(int i = 0; i < n; i++)
        {
            for(int j = 0; j < n; j++)
                cout << cap[i][j] << " ";
            cout << endl;
        }
        */
        Edmonds_Karp();
        printf("%d\n", ans);
    }
    return 0;
}
时间: 2024-10-06 11:44:19

POJ 1459 Power Network 经典网络流构图问题 最大流,EK算法的相关文章

POJ 1459 Power Network(网络流 最大流 多起点,多汇点)

Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 22987   Accepted: 12039 Description A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied

初涉网络流 POJ 1459 Power Network

怒搞一下午网络流,又去我一块心病. 从2F到SAP再到Dinic终于过掉了.可是书上说Dinic的时间复杂度为v*v*e.感觉也应该超时的啊,可是过掉了,好诡异. 后两种算法都是在第一种的基础上进行优化.第一种方法就是不停的寻找增广路,后两种引进了层次网络的概念,第三种又改善了寻找增广路的方法. 现在只能理解到这里了... #include <algorithm> #include <iostream> #include <cstring> #include <c

poj 1459 Power Network, 最大流,多源多汇

点击打开链接 多源多汇最大流,虚拟一个源点s'和一个汇点t',原来的源点.汇点向它们连边. #include<cstdiO> #include<cstring> #include<iostream> #include<algorithm> #include<queue> #include<vector> using namespace std; const int maxn = 500 + 5; const int INF = 100

POJ 1459 Power Network(ISAP 裸最大流)

题目链接:http://poj.org/problem?id=1459 注意输入格式就行,还是ISAP #include <iostream> #include <cstdlib> #include <cstdio> #include <cstring> #include <queue> #include <algorithm> const int N = 210; const int maxn = 300; const int ma

poj 1459 Power Network (dinic)

Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 23059   Accepted: 12072 Description A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied

POJ 1459 Power Network 最大流

建模不难,就读入有点麻烦,无脑拍完dinic 1A happy- #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <climits> #include <string> #include <iostream> #include <map> #include <cstdlib> #i

POJ 1459 Power Network (网络流最大流基础 多源点多汇点 Edmonds_Karp算法)

Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 24056   Accepted: 12564 Description A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied

POJ 1459 Power Network(多源点/汇点最大流问题)

题目链接:http://poj.org/problem?id=1459 题目: Description A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0

POJ 1459 Power Network

Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 27831   Accepted: 14469 Description A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied