贝叶斯推断及其互联网应用(三):拼写检查

(这个系列的第一部分介绍了贝叶斯定理,第二部分介绍了如何过滤垃圾邮件,今天是第三部分。)

使用Google的时候,如果你拼错一个单词,它会提醒你正确的拼法。

比如,你不小心输入了seperate。

Google告诉你,这个词是不存在的,正确的拼法是separate。

这就叫做"拼写检查"(spelling corrector)。有好几种方法可以实现这个功能,Google使用的是基于贝叶斯推断的统计学方法。这种方法的特点就是快,很短的时间内处理大量文本,并且有很高的精确度(90%以上)。Google的研发总监Peter Norvig,写过一篇著名的文章,解释这种方法的原理。

下面我们就来看看,怎么利用贝叶斯推断,实现"拼写检查"。其实很简单,一小段代码就够了。

一、原理

用户输入了一个单词。这时分成两种情况:拼写正确,或者拼写不正确。我们把拼写正确的情况记做c(代表correct),拼写错误的情况记做w(代表wrong)。

所谓"拼写检查",就是在发生w的情况下,试图推断出c。从概率论的角度看,就是已知w,然后在若干个备选方案中,找出可能性最大的那个c,也就是求下面这个式子的最大值。

  P(c|w)

根据贝叶斯定理:

  P(c|w) = P(w|c) * P(c) / P(w)

对于所有备选的c来说,对应的都是同一个w,所以它们的P(w)是相同的,因此我们求的其实是

  P(w|c) * P(c)

的最大值。

P(c)的含义是,某个正确的词的出现"概率",它可以用"频率"代替。如果我们有一个足够大的文本库,那么这个文本库中每个单词的出现频率,就相当于它的发生概率。某个词的出现频率越高,P(c)就越大。

P(w|c)的含义是,在试图拼写c的情况下,出现拼写错误w的概率。这需要统计数据的支持,但是为了简化问题,我们假设两个单词在字形上越接近, 就有越可能拼错,P(w|C)就越大。举例来说,相差一个字母的拼法,就比相差两个字母的拼法,发生概率更高。你想拼写单词hello,那么错误拼成 hallo(相差一个字母)的可能性,就比拼成haallo高(相差两个字母)。

所以,我们只要找到与输入单词在字形上最相近的那些词,再在其中挑出出现频率最高的一个,就能实现 P(w|c) * P(c) 的最大值。

二、算法

最简单的算法,只需要四步就够了。

第一步,建立一个足够大的文本库。

网上有一些免费来源,比如古登堡计划Wiktionary英国国家语料库等等。

第二步,取出文本库的每一个单词,统计它们的出现频率。

第三步,根据用户输入的单词,得到其所有可能的拼写相近的形式。

所谓"拼写相近",指的是两个单词之间的"编辑距离"(edit distance)不超过2。也就是说,两个词只相差1到2个字母,只通过----删除、交换、更改和插入----这四种操作中的一种,就可以让一个词变成另一个词。

第四步,比较所有拼写相近的词在文本库的出现频率。频率最高的那个词,就是正确的拼法。

根据Peter Norvig的验证,这种算法的精确度大约为60%-70%(10个拼写错误能够检查出6个。)虽然不令人满意,但是能够接受。毕竟它足够简单,计算速度极快。(本文的最后部分,将详细讨论这种算法的缺陷在哪里。)

三、代码

我们使用Python语言,实现上一节的算法。

第一步,把网上下载的文本库保存为big.txt文件。这步不需要编程。

第二步,加载Python的正则语言模块(re)和collections模块,后面要用到。

  import re, collections

第三步,定义words()函数,用来取出文本库的每一个词。

  def words(text): return re.findall(‘[a-z]+‘, text.lower())

lower()将所有词都转成小写,避免因为大小写不同,而被算作两个词。

第四步,定义一个train()函数,用来建立一个"字典"结构。文本库的每一个词,都是这个"字典"的键;它们所对应的值,就是这个词在文本库的出现频率。

  def train(features):

    model = collections.defaultdict(lambda: 1)

    for f in features:

      model[f] += 1

    return model

collections.defaultdict(lambda: 1)的意思是,每一个词的默认出现频率为1。这是针对那些没有出现在文本库的词。如果一个词没有在文本库出现,我们并不能认定它就是一个不存在的词,因此 将每个词出现的默认频率设为1。以后每出现一次,频率就增加1。

第五步,使用words()和train()函数,生成上一步的"词频字典",放入变量NWORDS。

  NWORDS = train(words(file(‘big.txt‘).read()))

第六步,定义edits1()函数,用来生成所有与输入参数word的"编辑距离"为1的词。

  alphabet = ‘abcdefghijklmnopqrstuvwxyz‘

  def edits1(word):

    splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]

    deletes = [a + b[1:] for a, b in splits if b]

    transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b)>1]

    replaces = [a + c + b[1:] for a, b in splits for c in alphabet if b]

    inserts = [a + c + b for a, b in splits for c in alphabet]

    return set(deletes + transposes + replaces + inserts)

edit1()函数中的几个变量的含义如下:

  (1)splits:将word依次按照每一位分割成前后两半。比如,‘abc‘会被分割成 [(‘‘, ‘abc‘), (‘a‘, ‘bc‘), (‘ab‘, ‘c‘), (‘abc‘, ‘‘)] 。

  (2)beletes:依次删除word的每一位后、所形成的所有新词。比如,‘abc‘对应的deletes就是 [‘bc‘, ‘ac‘, ‘ab‘] 。

  (3)transposes:依次交换word的邻近两位,所形成的所有新词。比如,‘abc‘对应的transposes就是 [‘bac‘, ‘acb‘] 。

  (4)replaces:将word的每一位依次替换成其他25个字母,所形成的所有新词。比如,‘abc‘对应的replaces就是 [‘abc‘, ‘bbc‘, ‘cbc‘, ... , ‘abx‘, ‘ aby‘, ‘abz‘ ] ,一共包含78个词(26 × 3)。

  (5)inserts:在word的邻近两位之间依次插入一个字母,所形成的所有新词。比如,‘abc‘ 对应的inserts就是[‘aabc‘, ‘babc‘, ‘cabc‘, ..., ‘abcx‘, ‘abcy‘, ‘abcz‘],一共包含104个词(26 × 4)。

最后,edit1()返回deletes、transposes、replaces、inserts的合集,这就是与word"编辑距离"等于1的所有词。对于一个n位的词,会返回54n+25个词。

第七步,定义edit2()函数,用来生成所有与word的"编辑距离"为2的词语。

  def edits2(word):

    return set(e2 for e1 in edits1(word) for e2 in edits1(e1))

但是这样的话,会返回一个 (54n+25) * (54n+25) 的数组,实在是太大了。因此,我们将edit2()改为known_edits2()函数,将返回的词限定为在文本库中出现过的词。

  def known_edits2(word):

    return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS)

第八步,定义correct()函数,用来从所有备选的词中,选出用户最可能想要拼写的词。

  def known(words): return set(w for w in words if w in NWORDS)

  def correct(word):

    candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]

    return max(candidates, key=NWORDS.get)

我们采用的规则为:

  (1)如果word是文本库现有的词,说明该词拼写正确,直接返回这个词;

  (2)如果word不是现有的词,则返回"编辑距离"为1的词之中,在文本库出现频率最高的那个词;

  (3)如果"编辑距离"为1的词,都不是文本库现有的词,则返回"编辑距离"为2的词中,出现频率最高的那个词;

  (4)如果上述三条规则,都无法得到结果,则直接返回word。

至此,代码全部完成,合起来一共21行。

  import re, collections

  def words(text): return re.findall(‘[a-z]+‘, text.lower())

  def train(features):

    model = collections.defaultdict(lambda: 1)

    for f in features:

      model[f] += 1

    return model

  NWORDS = train(words(file(‘big.txt‘).read()))

  alphabet = ‘abcdefghijklmnopqrstuvwxyz‘

  def edits1(word):

    splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]

    deletes = [a + b[1:] for a, b in splits if b]

    transposes = [a + b[1] + b[0] + b[2:] for a, b in splits if len(b)>1]

    replaces = [a + c + b[1:] for a, b in splits for c in alphabet if b]

    inserts = [a + c + b for a, b in splits for c in alphabet]

    return set(deletes + transposes + replaces + inserts)

  def known_edits2(word):

    return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS)

  def known(words): return set(w for w in words if w in NWORDS)

  def correct(word):

    candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]

    return max(candidates, key=NWORDS.get)

使用方法如下:

  >>> correct(‘speling‘)

  ‘spelling‘

  >>> correct(‘korrecter‘)

  ‘corrector‘

四、缺陷

我们使用的这种算法,有一些缺陷,如果投入生产环境,必须在这些方面加入改进。

(1)文本库必须有很高的精确性,不能包含拼写错误的词。

如果用户输入一个错误的拼法,文本库恰好包含了这种拼法,它就会被当成正确的拼法。

(2)对于不包含在文本库中的新词,没有提出解决办法。

如果用户输入一个新词,这个词不在文本库之中,就会被当作错误的拼写进行纠正。

(3)程序返回的是"编辑距离"为1的词,但某些情况下,正确的词的"编辑距离"为2。

比如,用户输入reciet,会被纠正为recite(编辑距离为1),但用户真正想要输入的词是receipt(编辑距离为2)。也就是说,"编辑距离"越短越正确的规则,并非所有情况下都成立。

(4)有些常见拼写错误的"编辑距离"大于2。

这样的错误,程序无法发现。下面就是一些例子,每一行前面那个词是正确的拼法,后面那个则是常见的错误拼法。

purple perpul
curtains courtens
minutes muinets
successful sucssuful
inefficient ineffiect
availability avaiblity
dissension desention
unnecessarily unessasarily
necessary nessasary
unnecessary unessessay
night nite
assessing accesing
necessitates nessisitates

(5)用户输入的词的拼写正确,但是其实想输入的是另一个词。

比如,用户输入是where,这个词拼写正确,程序不会纠正。但是,用户真正想输入的其实是were,不小心多打了一个h。

(6)程序返回的是出现频率最高的词,但用户真正想输入的是另一个词。

比如,用户输入ther,程序会返回the,因为它的出现频率最高。但是,用户真正想输入的其实是their,少打了一个i。也就是说,出现频率最高的词,不一定就是用户想输入的词。

(7)某些词有不同的拼法,程序无法辨别。

比如,英国英语和美国英语的拼法不一致。英国用户输入‘humur‘,应该被纠正为‘humour‘;美国用户输入‘humur‘,应该被纠正为‘humor‘。但是,我们的程序会统一纠正为‘humor‘。

(完)

时间: 2024-08-29 09:34:08

贝叶斯推断及其互联网应用(三):拼写检查的相关文章

贝叶斯推断及其互联网应用(一)

一年前的这个时候,我正在翻译Paul Graham的<黑客与画家>. 那本书大部分谈的是技术哲学,但是第八章却写了一个非常具体的技术问题----如何使用贝叶斯推断过滤垃圾邮件(英文版)? 说实话,我没完全看懂那一章.那时,交稿截止日期已经过了,没时间留给我去啃概率论教科书了.我只好硬着头皮,按照字面意思把它译了出来.虽然交稿了,译文质量也还可以,但是心里很不舒服,下决心一定要搞懂它. 一年过去了,我读了一些概率论文献,逐渐发现贝叶斯推断并没有想象的那么难.相反的,它的原理部分实际上很容易理解,

[转] 贝叶斯推断及其互联网应用:过滤垃圾邮件

[链接] 数学的美学世界 上一次,我介绍了贝叶斯推断的原理,今天讲如何将它用于垃圾邮件过滤. ======================================== 贝叶斯推断及其互联网应用 作者:阮一峰 七.什么是贝叶斯过滤器? 垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户. 正确识别垃圾邮件的技术难度非常大.传统的垃圾邮件过滤方法,主要有"关键词法"和"校验码法"等.前者的过滤依据是特定的词语:后者则是计算邮件文本的校验码,再与已知的垃圾邮件进

贝叶斯推断及其互联网应用(二):过滤垃圾邮件

有关贝叶斯原理的讲解, 请查看这里.这里讲述的是通过贝叶斯推断如何过滤垃圾邮件. 贝叶斯推断及其互联网应用        (接上文) 七.什么是贝叶斯过滤器?    垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户.    正确识别垃圾邮件的技术难度非常大.传统的垃圾邮件过滤方法,主要有"关键词法"和"校验码法"等.前者的过滤依据是特定的词语:后者则是计算邮件文本的效验码,再与已知的垃圾邮件进行对比.它们的识别效果都不理想,而且很容易规避.    2002年,P

【转载】贝叶斯推断及其互联网应用(一):定理简介

作者: 阮一峰 原文链接:http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_one.html 一.什么是贝叶斯推断 贝叶斯推断(Bayesian inference)是一种统计学方法,用来估计统计量的某种性质. 它是贝叶斯定理(Bayes' theorem)的应用.英国数学家托马斯·贝叶斯(Thomas Bayes)在1763年发表的一篇论文中,首先提出了这个定理. 贝叶斯推断与其他统计学推断方法截然不同.它建立在主观判

贝叶斯推断 &amp;&amp; 概率编程初探

1. 写在之前的话 0x1:贝叶斯推断的思想 我们从一个例子开始我们本文的讨论.小明是一个编程老手,但是依然坚信bug仍有可能在代码中存在.于是,在实现了一段特别难的算法之后,他开始决定先来一个简单的测试用例,这个用例通过了.接着,他用了一个稍微复杂的测试用例,再次通过了.接下来更难的测试用例也通过了,这时,小明开始觉得这段代码出现bug的可能性大大大大降低了.... 上面这段白话文中,已经包含了最质朴的贝叶斯思想了!简单来说,贝叶斯推断是通过新得到的证据不断地更新我们的信念. 贝叶斯推断很少会

贝叶斯推断

参考文献: http://www.ruanyifeng.com/blog/2011/08/bayesian_inference_part_one.html 贝叶斯定理:计算“条件概率”公式 条件概率: 就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示 如图,事件B发生的情况下,事件A发生的概率P(A|B)就是P(A∩B)除以P(B) 因此, 同理可得, 所以, 即条件概率的计算公式 全概率: 假定样本空间S,是两个事件A与A'的和. 上图中,红色部分是事件A,绿色部分是事件A'

分享《贝叶斯方法 概率编程与贝叶斯推断》中文版PDF+英文版PDF+源代码

下载:https://pan.baidu.com/s/1dyaW_x6WhfBxhy1fcxrdNw 更多资料分享:http://blog.51cto.com/3215120 <贝叶斯方法 概率编程与贝叶斯推断>中文版PDF+英文版PDF+源代码 中文版PDF,带目录和书签:英文版PDF,带目录和书签:中英文两版可以对比学习.配套源代码:经典书籍,讲解详细:其中,中文版如图: 原文地址:http://blog.51cto.com/3215120/2313695

转载-- 从贝叶斯方法谈到贝叶斯网络

从贝叶斯方法谈到贝叶斯网络 0 引言 事实上,介绍贝叶斯定理.贝叶斯方法.贝叶斯推断的资料.书籍不少,比如<数理统计学简史>,以及<统计决策论及贝叶斯分析 James O.Berger著>等等,然介绍贝叶斯网络的中文资料则非常少,中文书籍总共也没几本,有的多是英文资料,但初学者一上来就扔给他一堆英文论文,因无基础和语言的障碍而读得异常吃力导致无法继续读下去则是非常可惜的(当然,有了一定的基础后,便可阅读更多的英文资料). 11月9日上午,机器学习班 第9次课,邹讲贝叶斯网络,其帮助

C#编程实现朴素贝叶斯算法下的情感分析

C#编程实现 这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Progressing)中的重要问题,用以对文本进行正负面的判断,以及情感度评分和意见挖掘.本文借助朴素贝叶斯算法,针对文本正负面进行判别,并且利用C#进行编程实现. 不先介绍点基础? 朴素贝叶斯,真的很朴素 朴素贝叶斯分类算法,是一种有监督学习算法,通过对训练集的学习,基于先验概率与贝叶