Maximum Product Subarray
Title:
Find the contiguous subarray within an array (containing at least one number) which has the largest product.
For example, given the array [2,3,-2,4]
,
the contiguous subarray [2,3]
has the largest product = 6
.
对于Product Subarray,要考虑到一种特殊情况,即负数和负数相乘:如果前面得到一个较小的负数,和后面一个较大的负数相乘,得到的反而是一个较大的数,如{2,-3,-7},所以,我们在处理乘法的时候,除了需要维护一个局部最大值,同时还要维护一个局部最小值,由此,可以写出如下的转移方程式:
max_copy[i] = max_local[i]
max_local[i + 1] = Max(Max(max_local[i] * A[i], A[i]), min_local * A[i])
min_local[i + 1] = Min(Min(max_copy[i] * A[i], A[i]), min_local * A[i])
class Solution { public: int maxProduct(vector<int>& nums) { int pmin = nums[0]; int pmax = nums[0]; int result = nums[0]; for (int i = 1; i < nums.size(); i++){ int tmax = pmax * nums[i]; int tmin = pmin * nums[i]; pmax = max(nums[i],max(tmax,tmin)); pmin = min(nums[i],min(tmax,tmin)); result = max(result,pmax); } return result; } };
Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
class Solution{ public: int maxSubArray(int A[], int n) { int maxSum = A[0]; int sum = A[0]; for (int i = 1; i < n; i++){ if (sum < 0) sum = 0; sum += A[i]; maxSum = max(sum,maxSum); } return maxSum; } };