ZOJ3795 Grouping 强连通缩点+图的最长路

给出m条a年龄大于等于b的信息,要求可以比较的两个人不能放在同一组,问最少能分成几组。

由于是大于等于,所以原图可能构成强连通分量,意思就是有很多人年龄相同(想想也该知道,总共10w个人,肯定有很多人年龄重复= =!)将原图缩点后,对新图记忆化搜索求最长路。

如果不缩点,会RE。。。

#include <iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<algorithm>
using namespace std;
#define MAXN 100005
#define MAXM 300005
struct node
{
    int to,next;
}edge[MAXM],edge2[MAXM];
int head[MAXN],en;
int low[MAXN],dfn[MAXN],stack[MAXN],top,set[MAXN],col,num;
bool vis[MAXN],instack[MAXN];
int n;
int m;
void addedge(int a,int b)
{
    edge[en].to=b;
    edge[en].next=head[a];
    head[a]=en++;
}
void tarjan(int u)
{

    vis[u]=1;
    dfn[u]=low[u]=++num;
    instack[u]=true;
    stack[++top]=u;
    for(int i=head[u];i!=-1;i=edge[i].next)
    {
        int v=edge[i].to;
        if(!vis[v])
        {
            tarjan(v);
            low[u]=min(low[u],low[v]);
        }
        else
            if(instack[v])
                low[u]=min(dfn[v],low[u]);
    }
    if(dfn[u]==low[u])
    {
        int j;
        col++;
        do
        {
            j=stack[top--];
            instack[j]=false;
          set[j]=col;
        }
        while (j!=u);
    }
}
int head2[MAXN];
int sum[MAXN],en2;
int dp[MAXN];
int in[MAXN];
void init()
{
    int i;
    en2=en=top=col=num=0;
    memset(dp,-1,sizeof(dp));
    memset(head,-1,sizeof(head));
    memset(instack,0,sizeof(instack));
    memset(vis,0,sizeof(vis));
    memset(set,-1,sizeof(set));
    memset(head2,-1,sizeof(head2));
    memset(sum,0,sizeof(sum));
    memset(in,0,sizeof(in));
}
void addedge2(int a,int b)
{
    edge2[en2].to=b;
    edge2[en2].next=head2[a];
    head2[a]=en2++;
}

int dfs(int now)
{
    if(~dp[now]) return dp[now];
    int maxn=sum[now];
    for(int i=head2[now];~i;i=edge2[i].next)
    {
        int to=edge2[i].to;
        maxn=max(maxn,sum[now]+dfs(to));
    }
    return dp[now]=maxn;
}
int main()
{
    int a,b;
    while(~scanf("%d%d",&n,&m))
    {
        init();
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d",&a,&b);
            addedge(a,b);
        }
        for(int i=1;i<=n;i++)
            if(!vis[i])tarjan(i);
        for(int i=1;i<=n;i++) sum[set[i]]++;
     //   for(int i=1;i<=n;i++) printf("%d=%d\n",i,set[i]);
        for(int i=1;i<=n;i++)
        {
            for(int j=head[i];~j;j=edge[j].next)
            {
                int to=edge[j].to;
                if(set[to]!=set[i])
                {
                    in[set[to]]++;
                    addedge2(set[i],set[to]);
                }
            }
        }
        for(int i=1;i<=col;i++) if(in[i]==0) addedge2(0,i);
        dfs(0);
        int ans=0;
        for(int i=1;i<=col;i++) ans=max(ans,dp[i]);
        printf("%d\n",ans);
    }
    return 0;
}
/*
7 8
1 2
2 3
3 1
3 5
3 4
4 6
6 7
7 4
*/

ZOJ3795 Grouping 强连通缩点+图的最长路

时间: 2024-11-10 14:14:38

ZOJ3795 Grouping 强连通缩点+图的最长路的相关文章

zoj3795 Grouping --- 强连通,求最长路

给定图,求把至少把图拆成几个集合能够使集合内的点没有直接或间接关系. 首先由题意可得图中可能含环,而环里面的点肯定是要拆开的. 缩点建图得DAG图,可以想象一下..把图从入度为零的点向下展开,位于同一层的点放在一个集合是没有关系的, 那么题目所求的问题就转化成求图中最长路的问题了. 这个题的实质和 这题 其实是一模一样的.. #include <iostream> #include <cstring> #include <string> #include <cst

poj 3592 Instantaneous Transference 强连通图 缩点 再求最长路

1 #include<iostream> 2 #include<stdio.h> 3 #include<string.h> 4 #include<stack> 5 #include<queue> 6 using namespace std; 7 #define maxx 44 8 #define maxx2 44*44 9 #define INF 99999999 10 char s[maxx][maxx]; 11 bool tong[maxx2

【强联通分量缩点】【最长路】【spfa】CH Round #59 - OrzCC杯NOIP模拟赛day1 队爷的讲学计划

10分算法:对于城市网络为一条单向链的数据, 20分算法:对于n<=20的数据,暴力搜出所有的可能路径. 结合以上可以得到30分. 60分算法:分析题意可得使者会带着去的城市也就是这个城市所在强联通分量的其他城市,这个过程的代价也就是这个强联通分量的城市数-1,且他可以选择任何一个其中的城市离开这个强联通分量.于是我们求出所有强联通分量,记录下每一个包含的城市数,然后缩点.接下来再用dfs,由于数据是构造的,只能得到60分. 100分算法:在缩点之后,这个图变成了一个有向无环图,我们将一条边连向

HDOJ 4460 Friend Chains 图的最长路

类似于树的直径,从随意一个点出发,找到距离该点最远的且度数最少的点. 然后再做一次最短路 Friend Chains Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 4227    Accepted Submission(s): 1359 Problem Description For a group of people, there

POJ 3592--Instantaneous Transference【SCC缩点新建图 &amp;amp;&amp;amp; SPFA求最长路 &amp;amp;&amp;amp; 经典】

Instantaneous Transference Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 6177   Accepted: 1383 Description It was long ago when we played the game Red Alert. There is a magic function for the game objects which is called instantaneous

POJ 3592--Instantaneous Transference【SCC缩点新建图 &amp;&amp; SPFA求最长路 &amp;&amp; 经典】

Instantaneous Transference Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 6177   Accepted: 1383 Description It was long ago when we played the game Red Alert. There is a magic function for the game objects which is called instantaneous

POJ3592 Instantaneous Transference 强连通+最长路

题目链接: poj3592 题意: 给出一幅n X m的二维地图,每个格子可能是矿区,障碍,或者传送点 用不同的字符表示: 有一辆矿车从地图的左上角(0,0)出发,只能往右走或往下走,或者通过传送点  选择是否 传送到特定地点 采过的矿的格子 矿会消失;问这辆矿车最多能采多少矿 解题思路: 首先重新建图,将图中二维的顶点压缩成一维的顶点             (方便Tarjan算法) 每个顶点往右,下的顶点建边,传送点的格子往特定顶点建边(建边的两端不能有障碍) 得到一幅可能存在环的有向图;

[SDOI2010]所驼门王的宝藏 --tarjan缩点+最长路

[SDOI2010]所驼门王的宝藏 题目描述 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为“先知”的Alpaca L. Sotomon是这个家族的领袖,外人也称其为“所驼门王”.所驼门王毕生致力于维护家族的安定与和谐,他曾亲自率军粉碎河蟹帝国主义的野蛮侵略,为族人立下赫赫战功.所驼门王一生财宝无数,但因其生性节俭低调,他将财宝埋藏在自己设计的地下宫殿里,这也是今天Henry Curtis故事的起点.Henry是一个爱财如命的贪婪家伙,而又非常聪明,他费尽心机谋划了这次盗窃行动,

HDU 4971 A simple brute force problem. 强连通缩点+最大权闭合图

题意: 给定n个项目,m个技术难题 下面一行n个数字表示每个项目的收益 下面一行m个数字表示攻克每个技术难题的花费 下面n行第i行表示 第一个数字u表示完成 i 项目需要解决几个技术难题,后面u个数字表示需要解决的问题标号. 下面m*m的矩阵 (i,j) = 1 表示要解决j问题必须先解决i问题. (若几个问题成环,则需要一起解决) 问:最大收益. 思路: 先给问题缩点一下,每个缩点后的点权就是这个点内所有点权和. 然后跑一个最大权闭合图. #include<stdio.h> #include