【BZOJ】1072: [SCOI2007]排列perm(状压dp+特殊的技巧)

http://www.lydsy.com/JudgeOnline/problem.php?id=1072

首先无限膜拜题解orz表示只会暴力orz

数据那么小我竟然想不到状压!

orz

这种题可以取模设状态orz

f[i,j]表示状态为i,mod d为j的方案

则答案为f[all, 0]

转移就太简单了orz

f[i|1<<k, (j*10+c[k])%d]+=f[i, j]

然后我有一sb错一直没找到,wa了n发。。。

QAQ

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << ‘\t‘; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<‘0‘||c>‘9‘; c=getchar()) if(c==‘-‘) k=-1; for(; c>=‘0‘&&c<=‘9‘; c=getchar()) r=r*10+c-‘0‘; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; }

const int N=12;
int f[3005][1005], d, n, c[N], x[N], p[N];
int main() {
	int cs=getint();
	char s[N];
	p[0]=1;
	for1(i, 1, 11) p[i]=p[i-1]*i;
	while(cs--) {
		scanf("%s", s);
		n=strlen(s); read(d);
		CC(x, 0);
		rep(i, n) c[i]=s[i]-‘0‘, x[c[i]]++;
		int all=(1<<n)-1;
		for1(i, 0, all) rep(j, d) f[i][j]=0;
		f[0][0]=1;
		rep(i, all) rep(j, d) if(f[i][j])
			rep(k, n) if(!(i&(1<<k))) f[i|(1<<k)][(j*10+c[k])%d]+=f[i][j];
		int ans=f[all][0];
		rep(i, 10) ans/=p[x[i]];
		printf("%d\n", ans);
	}
	return 0;
}

  


Description

给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0)。例如123434有90种排列能被2整除,其中末位为2的有30种,末位为4的有60种。

Input

输入第一行是一个整数T,表示测试数据的个数,以下每行一组s和d,中间用空格隔开。s保证只包含数字0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Output

每个数据仅一行,表示能被d整除的排列的个数。

Sample Input

7
000 1
001 1
1234567890 1
123434 2
1234 7
12345 17
12345678 29

Sample Output

1
3
3628800
90
3
6
1398

HINT

在前三个例子中,排列分别有1, 3, 3628800种,它们都是1的倍数。

【限制】

100%的数据满足:s的长度不超过10, 1<=d<=1000, 1<=T<=15

Source

时间: 2024-10-10 22:05:28

【BZOJ】1072: [SCOI2007]排列perm(状压dp+特殊的技巧)的相关文章

BZOJ 1072 SCOI2007 排列perm 状压DP

题目大意:给定n个数字,求这些数字的全排列中有多少数能被d整除 令f[i][j]为状态为i,余数为j的方案数 枚举最高位转移 小心爆int #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; int n,d,ans,f[1<<10][1<<10],digit[1<<10],tens[10

[BZOJ1072][SCOI2007]排列perm 状压dp

1072: [SCOI2007]排列perm Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2488  Solved: 1546[Submit][Status][Discuss] Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能被2整除,其中末位为2的有30种,末位为4的有60种. Input 输入第一行是一个整数T,表示测试数据的个数,以下每行一组s和d,中间

B1072 [SCOI2007]排列perm 状压dp

很简单的状压dp,但是有一个事,就是...我数组开大了一点,然后每次memset就会T,然后开小就好了!!!震惊!以后小心点这个问题. 题干: Description 给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0).例如123434有90种排列能 被2整除,其中末位为2的有30种,末位为4的有60种. Input 输入第一行是一个整数T,表示测试数据的个数,以下每行一组s和d,中间用空格隔开.s保证只包含数字0, 1 , 2, 3, 4, 5, 6, 7, 8,

[BZOJ 1072] [SCOI2007] 排列perm 【状压DP】

题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <cmath> #include <set>

BZOJ 1072 [SCOI2007]排列perm

考虑到s的长度特别小,只有10,可以考虑状压dp. 设F[S][d]表示当选了集合S(用二进制压位表示)中的所有位置,对D取模的结果为d的方案总数:不难想到转移和初始化. 初始化:F[0][0]=1  0在这里表示空集合 转移:F[S][(d * 10 + s[i]-'0') % D]=sum{F[S0][d]}  S0是S的一个子集,并且刚好只比S少一个元素i 注意,重复的数字被算了多遍.样例当中就有.因此最后的答案要除以所有重复的数字个数的阶乘. 看代码就明白啦~ (再补充一个要用到状压技巧

【以前的空间】bzoj 1072 [SCOI2007]排列perm

又颓废了一个下午,最近撸mc撸到丧失意识了,玩的有点恶心,于是找水题做,瞧不起颓废的自己啊. another水题. 这题题意很明显啦,就是找数字排列后组成的数去mod d=0后有多少种. 普通的搜索的话,是会tle的(应该是o(n!)没错?).注意到长度n还是比较小的,于是想到状压dp. 状态就是每个数取和不取组成的结果(就是00110表示第3,4个数取了啦,学过状压都知道). 然后转移就是f[i,j,k]表示现在取到第i个数状态为i余数为j有多少种情况, 那么f[i,j,(k*10+a[i])

BZOJ 1072: [SCOI2007]排列perm [DP 状压 排列组合]

题意:给一个数字串s和正整数d, 统计s有多少种不同的排列能被d整除(可以有前导0) 100%的数据满足:s的长度不超过10, 1<=d<=1000, 1<=T<=15 看到整除应该往余数方面想 $f[s][i]$表示当前已经选择的数的集合为$s$,余数为$i$的方案数 枚举下一个数字,用更新的写法转移 注意是有重复元素的排列!除上个阶乘 #include <iostream> #include <cstdio> #include <cstring&g

CodeForces 327E Axis Walking(状压DP+卡常技巧)

Iahub wants to meet his girlfriend Iahubina. They both live in Ox axis (the horizontal axis). Iahub lives at point 0 and Iahubina at point d. Iahub has n positive integers a1, a2, ..., an. The sum of those numbers is d. Suppose p1, p2, ..., pn is a p

bzoj 1556: 墓地秘密【状压dp+spfa】

显然是状压,显然不可能把所有格子压起来 仔细观察发现只有机关周围的四个格子有用以及起点,所以我们用spfa处理出这些格子两两之间的距离(注意细节--这里写挂了好几次),然后设f[s][i]为碰完的机关石状态为s,现在在有用格子的第i个的最小停下次数,转移按照套路即可 #include<iostream> #include<cstdio> #include<queue> #include<cstring> using namespace std; const