启动spark集群

启动Spark集群

[email protected] $ ./sbin/start-all.sh

也可以一台一台启动,先启动 master

[email protected] $ ./sbin/start-master.sh

启动两台 slave,

[email protected] $ ./sbin/start-slave.sh 1 spark://master:7077
[email protected] $ ./sbin/start-slave.sh 2 spark://master:7077

其中,12 是 worker的编号,可以是任意数字,只要不重复即可,spark://master:7077 是 master 的地址。以后向集群提交作业的时候,也需要这个地址。

时间: 2024-10-22 16:15:38

启动spark集群的相关文章

Spark 集群部署

本文将接受 Spark 集群的部署方式,包括无 HA.Spark Standalone HA 和 基于 ZooKeeper 的 HA 三种. 环境:CentOS6.6 . JDK1.7.0_80 . 关闭防火墙 . 配置好 hosts 和 SSH 免密码.Spark1.5.0 一. 无 HA 方式 1. 主机名与角色的对应关系: node1.zhch    Master node2.zhch    Slave node3.zhch    Slave 2. 解压 Spark 部署包(可以从官网直接

实验室中搭建Spark集群和PyCUDA开发环境

1.安装CUDA 1.1安装前工作 1.1.1选取实验器材 实验中的每台计算机均装有双系统.选择其中一台计算机作为master节点,配置有GeForce GTX 650显卡,拥有384个CUDA核心.另外两台计算机作为worker节点,一个配置有GeForce GTX 650显卡,另外一个配置有GeForce GTX 750 Ti显卡,拥有640个CUDA核心. 在每台计算机均创建hadoop用户并赋予root权限,本文所有的操作都将在hadoop用户下进行. 1.1.2安装前准备 用以下命令来

spark学习笔记-spark集群搭建(7)

安装spark包 1 1.将spark-1.3.0-bin-hadoop2.4.tgz使用WinSCP上传到/usr/local目录下. 2 2.解压缩spark包:tar zxvf spark-1.3.0-bin-hadoop2.4.tgz. 3 3.更改spark目录名:mv spark-1.3.0-bin-hadoop2.4 spark 4 4.设置spark环境变量 5 vi .bashrc 6 export SPARK_HOME=/usr/local/spark 7 export PA

在Docker中从头部署自己的Spark集群

由于自己的电脑配置普普通通,在VM虚拟机中搭建的集群规模也就是6个节点左右,再多就会卡的不行 碰巧接触了Docker这种轻量级的容器虚拟化技术,理论上在普通PC机上搭建的集群规模可以达到很高(具体能有多少个也没有实际测试过) 于是就准备在Docker上搭建Spark集群 由于是Docker新手,在操作过程中遇到了不少麻烦 刚开始在网上找的资料都是直接从DockerHub上拉取别人已经建好的镜像使用 问题多多,下载速度慢,下载异常,运行异常,配置异常等等等等... 好不容易下载了一个可以用的镜像,

spark集群与spark HA高可用快速部署 spark研习第一季

1.spark 部署 标签: spark 0 apache spark项目架构 spark SQL -- spark streaming -- MLlib -- GraphX 0.1 hadoop快速搭建,主要利用hdfs存储框架 下载hadoop-2.6.0,解压,到etc/hadoop/目录下 0.2 快速配置文件 cat core-site.xml <configuration> <property> <name>fs.defaultFS</name>

Spark学习笔记—01 Spark集群的安装

一.概述 关于Spark是什么.为什么学习Spark等等,在这就不说了,直接看这个:http://spark.apache.org, 我就直接说一下Spark的一些优势: 1.快 与Hadoop的MapReduce相比,Spark基于内存的运算要快100倍以上,基于硬盘的运算也要快10倍以上.Spark实现了高效的DAG执行引擎,可以通过基于内存来高效处理数据流. 2.易用 Spark支持Java.Python和Scala的API,还支持超过80种高级算法,使用户可以快速构建不同的应用.而且Sp

Hadoop2.2集群安装配置-Spark集群安装部署

配置安装Hadoop2.2.0 部署spark 1.0的流程 一.环境描写叙述 本实验在一台Windows7-64下安装Vmware.在Vmware里安装两虚拟机分别例如以下 主机名spark1(192.168.232.147),RHEL6.2-64 操作系统,usernameRoot 从机名spark2(192.168.232.152).RHEL6.2-64 操作系统,usernameRoot 二.环境准备 1.防火墙禁用.SSH服务设置为开机启动.并关闭SELINUX 2.改动hosts文件

7.基于yarn的Spark集群搭建

构造分布式的Spark1.0.2集群 下载Scala 2.10.4,具体下载地址: http://www.scala-lang.org/download/2.10.4.html 在Ubuntu机器上Scala会帮助我们自动选择“scala-2.10.4.tgz”进行下载: 安装和配置Scala 我们需要在master.slave1以及slave2上分别安装Scala 安装Scala 将Scala安装包拷贝到各台机器上 解压 新建目录/usr/lib/scala 将上述解压之后的文件夹scala-

Spark集群安装(一)

需要的软件包: Spark1.0.2 Scala2.10.4 一.安装Scala Rpm –ivh scala-2.10.4.rpm #安装scala Scala  –version                    #检查刚刚安装的scala版本 Scala code runner version 2.10.4 -- Copyright 2002-2013,LAMP/EPFL [[email protected] ~]$ scala  #进入scala命令行交互模式 做简单运算看下运行结果