弄明白python reduce 函数

作者:Panda Fang

出处:http://www.cnblogs.com/lonkiss/p/understanding-python-reduce-function.html

原创文章,转载请注明作者和出处,未经允许不可用于商业营利活动

reduce() 函数在 python 2 是内置函数, 从python 3 开始移到了 functools 模块。

官方文档是这样介绍的

reduce(...)
reduce(function, sequence[, initial]) -> value

Apply a function of two arguments cumulatively to the items of a sequence,
from left to right, so as to reduce the sequence to a single value.
For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
((((1+2)+3)+4)+5). If initial is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the
sequence is empty.

从左到右对一个序列的项累计地应用有两个参数的函数,以此合并序列到一个单一值。

例如,reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])  计算的就是((((1+2)+3)+4)+5)。

如果提供了 initial 参数,计算时它将被放在序列的所有项前面,如果序列是空的,它也就是计算的默认结果值了

嗯, 这个文档其实不好理解。看了还是不懂。 序列 其实就是python中 tuple  list  dictionary string  以及其他可迭代物,别的编程语言可能有数组。

reduce 有 三个参数

function 有两个参数的函数, 必需参数
sequence tuple ,list ,dictionary, string等可迭代物,必需参数
initial 初始值, 可选参数

reduce的工作过程是 :在迭代sequence(tuple ,list ,dictionary, string等可迭代物)的过程中,首先把 前两个元素传给 函数参数,函数加工后,然后把得到的结果和第三个元素作为两个参数传给函数参数, 函数加工后得到的结果又和第四个元素作为两个参数传给函数参数,依次类推。 如果传入了 initial 值, 那么首先传的就不是 sequence 的第一个和第二个元素,而是 initial值和 第一个元素。经过这样的累计计算之后合并序列到一个单一返回值

reduce 代码举例,使用REPL演示

>>> def add(x, y):
...     return x+y
...
>>> from functools import reduce
>>> reduce(add, [1,2,3,4])
10
>>>

上面这段 reduce 代码,其实就相当于 1 + 2 + 3 + 4 = 10, 如果把加号改成乘号, 就成了阶乘了

当然 仅仅是求和的话还有更简单的方法,如下

>>> sum([1,2,3,4])
10
>>>

很多教程只讲了一个加法求和,太简单了,对新手加深理解还不够。下面讲点更深入的例子

还可以把一个整数列表拼成整数,如下

>>> from functools import reduce
>>> reduce(lambda x, y: x * 10 + y, [1 , 2, 3, 4, 5])
12345
>>>

对一个复杂的sequence使用reduce ,看下面代码,更多的代码不再使用REPL, 使用编辑器编写

 1 from functools import reduce
 2 scientists =({‘name‘:‘Alan Turing‘, ‘age‘:105},
 3              {‘name‘:‘Dennis Ritchie‘, ‘age‘:76},
 4              {‘name‘:‘John von Neumann‘, ‘age‘:114},
 5              {‘name‘:‘Guido van Rossum‘, ‘age‘:61})
 6 def reducer(accumulator , value):
 7     sum = accumulator[‘age‘] + value[‘age‘]
 8     return sum
 9 total_age = reduce(reducer, scientists)
10 print(total_age)

这段代码会出错,看下图的执行过程

所以代码需要修改

 1 from functools import reduce
 2 scientists =({‘name‘:‘Alan Turing‘, ‘age‘:105, ‘gender‘:‘male‘},
 3              {‘name‘:‘Dennis Ritchie‘, ‘age‘:76, ‘gender‘:‘male‘},
 4              {‘name‘:‘Ada Lovelace‘, ‘age‘:202, ‘gender‘:‘female‘},
 5              {‘name‘:‘Frances E. Allen‘, ‘age‘:84, ‘gender‘:‘female‘})
 6 def reducer(accumulator , value):
 7     sum = accumulator + value[‘age‘]
 8     return sum
 9 total_age = reduce(reducer, scientists, 0)
10 print(total_age)

7, 9 行 红色部分就是修改 部分。 通过 help(reduce) 查看 文档,

reduce 有三个参数, 第三个参数是初始值的意思,是可有可无的参数。

修改之后就不出错了,流程如下

这个仍然也可以用 sum 来更简单的完成

sum([x[‘age‘] for x in scientists ])

做点更高级的事情,按性别分组

from functools import reduce
scientists =({‘name‘:‘Alan Turing‘, ‘age‘:105, ‘gender‘:‘male‘},
             {‘name‘:‘Dennis Ritchie‘, ‘age‘:76, ‘gender‘:‘male‘},
             {‘name‘:‘Ada Lovelace‘, ‘age‘:202, ‘gender‘:‘female‘},
             {‘name‘:‘Frances E. Allen‘, ‘age‘:84, ‘gender‘:‘female‘})
def group_by_gender(accumulator , value):
    accumulator[value[‘gender‘]].append(value[‘name‘])
    return accumulator
grouped = reduce(group_by_gender, scientists, {‘male‘:[], ‘female‘:[]})
print(grouped)

输出

{‘male‘: [‘Alan Turing‘, ‘Dennis Ritchie‘], ‘female‘: [‘Ada Lovelace‘, ‘Frances E. Allen‘]}

可以看到,在 reduce 的初始值参数传入了一个dictionary,, 但是这样写 key 可能出错,还能再进一步自动化,运行时动态插入key

修改代码如下

grouped = reduce(group_by_gender, scientists, collections.defaultdict(list))

当然 先要 import  collections 模块

这当然也能用 pythonic way 去解决

import  itertools
scientists =({‘name‘:‘Alan Turing‘, ‘age‘:105, ‘gender‘:‘male‘},
             {‘name‘:‘Dennis Ritchie‘, ‘age‘:76, ‘gender‘:‘male‘},
             {‘name‘:‘Ada Lovelace‘, ‘age‘:202, ‘gender‘:‘female‘},
             {‘name‘:‘Frances E. Allen‘, ‘age‘:84, ‘gender‘:‘female‘})
grouped = {item[0]:list(item[1])
           for item in itertools.groupby(scientists, lambda x: x[‘gender‘])}
print(grouped)

再来一个更晦涩难懂的玩法。工作中要与其他人协作的话,不建议这么用,与上面的例子做同样的事,看不懂无所谓。

from functools import reduce
scientists =({‘name‘:‘Alan Turing‘, ‘age‘:105, ‘gender‘:‘male‘},
             {‘name‘:‘Dennis Ritchie‘, ‘age‘:76, ‘gender‘:‘male‘},
             {‘name‘:‘Ada Lovelace‘, ‘age‘:202, ‘gender‘:‘female‘},
             {‘name‘:‘Frances E. Allen‘, ‘age‘:84, ‘gender‘:‘female‘})
grouped = reduce(lambda acc, val: {**acc, **{val[‘gender‘]: acc[val[‘gender‘]]+ [val[‘name‘]]}}, scientists, {‘male‘:[], ‘female‘:[]})
print(grouped)

**acc, **{val[‘gneder‘]...   这里使用了 dictionary merge syntax ,  从 python 3.5 开始引入, 详情请看 PEP 448 - Additional Unpacking Generalizations  怎么使用可以参考这个python - How to merge two dictionaries in a single expression? - Stack Overflow

python 社区推荐写可读性好的代码,有更好的选择时不建议用reduce,所以 python 2 中内置的reduce 函数 移到了 functools模块中

时间: 2024-10-06 06:52:11

弄明白python reduce 函数的相关文章

python reduce 函数

reduce 函数,是对一个列表里的元素做累计计算的一个函数.接收两个参数(函数,序列)例如 1 def num(x,y) 2 return x+y 3 4 reduce(num,[1,2,3,4,5,6]) 5 6 返回21 就是对一个序列做累计操作

Python reduce函数

reduce函数使用一个二元函数和一个序列,序列中的前两个元素先放到二元函数运算,然后在用运算后的结果与列别的第三个元素进行运算,以此类推,知道列表的元素用完,返回计算结果. from functools import reduce def add1(x, y): return x + y tmp = reduce(add1, range(10)) #0+1+2+3+4+5+6+7+8+9 print(tmp) #45

使用python实现内置map,filter,reduce函数

map函数 # -*- coding: cp936 -*- def myselfmap(f,*args):     def urgymap(f,args):         if args==[]:             return []         else:             return [f(args[0])]+urgymap(f,args[1:])     if list(args)[0]==[]:             #*args有多个参数被传递时返回tuple  

python之lambda,filter,map,reduce函数

g = lambda x:x+1 看一下执行的结果: g(1) >>>2 g(2) >>>3 当然,你也可以这样使用: lambda x:x+1(1) >>>2 可以这样认为,lambda作为一个表达式,定义了一个匿名函数,上例的代码x为入口参数,x+1为函数体,用函数来表示为: def g(x): return x+1 非常容易理解,在这里lambda简化了函数定义的书写形式.是代码更为简洁,但是使用函数的定义方式更为直观,易理解. Python中,

Python 中的map函数,filter函数,reduce函数

自学python,很多地方都需要恶补. 三个函数比较类似,都是应用于序列的内置函数.常见的序列包括list.tuple.str. 1.map函数 map函数会根据提供的函数对指定序列做映射. map函数的定义: map(function, sequence[, sequence, ...]) -> list 通过定义可以看到,这个函数的第一个参数是一个函数,剩下的参数是一个或多个序列,返回值是一个集合. function可以理解为是一个一对一或多对一函数,map的作用是以参数序列中的每一个元素调

Python自学笔记-map和reduce函数(来自廖雪峰的官网Python3)

感觉廖雪峰的官网http://www.liaoxuefeng.com/里面的教程不错,所以学习一下,把需要复习的摘抄一下. 以下内容主要为了自己复习用,详细内容请登录廖雪峰的官网查看. Python内建了map()和reduce()函数. 我们先看map.map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回. 举例说明,比如我们有一个函数f(x)=x2,要把这个函数作用在一个list [1, 2, 3,

Python 之reduce()函数

reduce()函数: reduce()函数也是Python内置的一个高阶函数.reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数 f 必须接收两个参数,reduce()对list的每个元素反复调用函数f,并返回最终结果值. 例如,编写一个f函数,接收x和y,返回x和y的和: def f(x, y): return x + y 调用 reduce(f, [1, 3, 5, 7, 9])时,reduce函数将做如下计算

python实现阶乘阶乘--reduce函数

h=lambda t:(reduce(lambda x,y:x*y,range(1,t+1))) h(5)=120 reduce函数是一个二元操作函数,他用来将一个数据集合(链表,元组等)中的所有数据进行下列操作:用传给reduce中的函数 func()(必须是一个二元操作函数)先对集合中的第1,2个数据进行操作,得到的结果再与第三个数据用func()函数运算,最后得到一个结果. python实现阶乘阶乘--reduce函数

Python中map和reduce函数

①从参数方面来讲: map()函数: map()包含两个参数,第一个是参数是一个函数,第二个是序列(列表或元组).其中,函数(即map的第一个参数位置的函数)可以接收一个或多个参数. reduce()函数: reduce() 第一个参数是函数,第二个是 序列(列表或元组).但是,其函数必须接收两个参数. ②从对传进去的数值作用来讲: map()是将传入的函数依次作用到序列的每个元素,每个元素都是独自被函数"作用"一次:(请看下面的栗子) reduce()是将传人的函数作用在序列的第一个