BZOJ 4145 AMPPZ2014 The Prices 状压DP

题目大意:给定n个商店和m种物品,你需要每种物品买一个,去第i个商店的路费是di,第i个商店出售第j种物品的价格是ci,j,求最小花销

令fi,j表示当前已经考虑了前i个商店,购买的状态为j的最小花销

然后每个商店内跑个背包即可

时间复杂度O(nm2m)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
int n,m;
int c[110][20],d[110],f[110][1<<16];
int main()
{
    int i,j,k;
    cin>>n>>m;
    for(i=1;i<=n;i++)
    {
        scanf("%d",&d[i]);
        for(j=1;j<=m;j++)
            scanf("%d",&c[i][j]);
    }
    memset(f,0x3f,sizeof f);
    f[0][0]=0;
    for(i=1;i<=n;i++)
    {
        for(j=0;j<1<<m;j++)
            f[i][j]=f[i-1][j]+d[i];
        for(k=1;k<=m;k++)
            for(j=0;j<1<<m;j++)
                if(~j&(1<<k-1))
                    f[i][j|(1<<k-1)]=min(f[i][j|(1<<k-1)],f[i][j]+c[i][k]);
        for(j=0;j<1<<m;j++)
            f[i][j]=min(f[i][j],f[i-1][j]);
    }
    cout<<f[n][(1<<m)-1]<<endl;
    return 0;
}
时间: 2024-10-09 06:11:59

BZOJ 4145 AMPPZ2014 The Prices 状压DP的相关文章

BZOJ 4145: [AMPPZ2014]The Prices( 状压dp + 01背包 )

我自己只能想出O( n*3^m )的做法....肯定会T O( nm*2^m )做法: dp( x, s ) 表示考虑了前 x 个商店, 已买的东西的集合为s. 考虑转移 : 先假设我们到第x个商店去, so初始时 dp( x, s) = dp( x-1, s ) + d[x] 然后我们可以对第x个商店做01背包, dp(x, s + {h} ) = min( dp( x, s + {h} ) , dp( x, s) + c[x][h]) ) ( h ∉ s ). 之后我们再比较到第x个商店划不

bzoj4145 [AMPPZ2014]The Prices 状压 DP

题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4145 题解 好像这道题有不少方法呢. ...谁叫这道题有点简单,所以方法多呗. 我的方法: 求出 \(f[S]\) 表示要在同一家商店购买 \(S\) 中的物品的最小代价. 然后 \(dp[S]\) 表示购买 \(S\) 中的商品的最小代价.枚举子集转移即可. 时间复杂度 \(O(m2^n+3^n)\). 还有一个不错的做法: \(dp[i][S]\) 表示在前 \(i\) 个商店买 \(S

【bzoj4145】[AMPPZ2014]The Prices 状压dp

原文地址:http://www.cnblogs.com/GXZlegend/p/6832200.html 题目描述 你要购买m种物品各一件,一共有n家商店,你到第i家商店的路费为d[i],在第i家商店购买第j种物品的费用为c[i][j], 求最小总费用. 输入 第一行包含两个正整数n,m(1<=n<=100,1<=m<=16),表示商店数和物品数. 接下来n行,每行第一个正整数d[i](1<=d[i]<=1000000)表示到第i家商店的路费,接下来m个正整数, 依次表

Bzoj 4145: [AMPPZ2014]The Prices

Bzoj 4145: [AMPPZ2014]The Prices 状态压缩dp \(f[i][j]\)表示前i个商店 , 状态为j的最小花费. 考虑什么东西也不买和买了东西. 买了东西的话,就要到i地. 然后转移:\(f[i][j] = min(f[i][j] , f[i][j ^ (1 << k - 1)] + c[i][k])\) 不买东西 \(f[i][j] = f[i - 1][j]\) /*header*/ #include <iostream> #include <

bzoj 1556: 墓地秘密【状压dp+spfa】

显然是状压,显然不可能把所有格子压起来 仔细观察发现只有机关周围的四个格子有用以及起点,所以我们用spfa处理出这些格子两两之间的距离(注意细节--这里写挂了好几次),然后设f[s][i]为碰完的机关石状态为s,现在在有用格子的第i个的最小停下次数,转移按照套路即可 #include<iostream> #include<cstdio> #include<queue> #include<cstring> using namespace std; const

BZOJ 4145 [AMPPZ2014] The Prices 解题报告

感觉也是一个小清新题.. 我们考虑设立状态 $Dp[i][s]$ 表示考虑了前 $i$ 个商店后,购买状态为 $s$ 的最小花费. 转移的话就枚举每个商店 $i$,首先令: $$Dp[i][s] = Dp[i - 1][s] + D[i]$$ 这个过程表示到达这个商店. 然后枚举每个状态 $s$,然后枚举每个不在 $s$ 里的物品 $j$,令: $$Dp[i][s + \{j\}] = min(Dp[i][s + \{j\}], Dp[i][s] + Cost[i][j])$$ 这个过程就相当于

BZOJ 1072 SCOI2007 排列perm 状压DP

题目大意:给定n个数字,求这些数字的全排列中有多少数能被d整除 令f[i][j]为状态为i,余数为j的方案数 枚举最高位转移 小心爆int #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; int n,d,ans,f[1<<10][1<<10],digit[1<<10],tens[10

[BZOJ 1072] [SCOI2007] 排列perm 【状压DP】

题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> #include <cmath> #include <set>

BZOJ 1087: [SCOI2005]互不侵犯King( 状压dp )

简单的状压dp... dp( x , h , s ) 表示当前第 x 行 , 用了 h 个 king , 当前行的状态为 s . 考虑转移 : dp( x , h , s ) = ∑ dp( x - 1 , h - cnt_1( s ) , s' ) ( s and s' 两行不冲突 , cnt_1( s ) 表示 s 状态用了多少个 king ) 我有各种预处理所以 code 的方程和这有点不一样 ------------------------------------------------