20155301 滕树晨linux基础——linux进程间通信(IPC)机制总结

20155301 滕树晨linux基础——linux进程间通信(IPC)机制总结

共享内存

  • 共享内存是在多个进程之间共享内存区域的一种进程间的通信方式,由IPC为进程创建的一个特殊地址范围,它将出现在该进程的地址空间(这里的地址空间具体是哪个地方?)中。其他进程可以将同一段共享内存连接到自己的地址空间中。所有进程都可以访问共享内存中的地址,就好像它们是malloc分配的一样。如果一个进程向共享内存中写入了数据,所做的改动将立刻被其他进程看到
  • 共享内存是IPC最快捷的方式,因为共享内存方式的通信没有中间过程,而管道、消息队列等方式则是需要将数据通过中间机制进行转换。共享内存方式直接将某段内存段进行映射,多个进程间的共享内存是同一块的物理空间,仅仅映射到各进程的地址不同而已,因此不需要进行复制,可以直接使用此段空间。
  • 注意:共享内存本身并没有同步机制,需要程序员自己控制。
  • 共享内存的头文件
#include <sys/types.h>

#include <sys/stat.h>

#include <sys/shm.h>
  • 结构shmid_ds结构体
strcut shmid_ds{

  struct ipc_perm shm_perm;

  size_t shm_segsz;

  time_t shm_atime;

  time_t shm_dtime;

......
}
  • 共享内存函数定义:

int shmget(key_key,size_t size,int shmflg); //shmget函数用来创建一个新的共享内存段,或者访问一个现有的共享内存段(不同进程只要key值相同即可访问同一共享内存段)。第一个参数key是ftok生成的键值,第二个参数size为共享内存的大小,第三个参数sem_flags是打开共享内存的方式。

eg.int shmid = shmget(key, 1024, IPC_CREATE | IPC_EXCL | 0666);//第三个参数参考消息队列int msgget

(key_t key,int msgflag);

void shmat(int shm_id,const void shm_addr,int shmflg); //shmat函数通过shm_id将共享内存连接到进程的地址空间中。第二个参数可以由用户指定共享内存映射到进程空间的地址,shm_addr如果为0,则由内核试着查找一个未映射的区域。返回值为共享内存映射的地址。

eg.char shms = (char )shmat(shmid, 0, 0);//shmid由shmget获得

int shmdt(const void *shm_addr); //shmdt函数将共享内存从当前进程中分离。 参数为共享内存映射的地址。

eg.shmdt(shms);

int shmctl(int shm_id,int cmd,struct shmid_ds *buf);//shmctl函数是控制函数,使用方法和消息队列msgctl()函数调用完全类似。参数一shm_id是共享内存的句柄,cmd是向共享内存发送的命令,最后一个参数buf是向共享内存发送命令的参数。

管道

管道实际是用于进程间通信的一段共享内存,创建管道的进程称为管道服务器,连接到一个管道的进程为管道客户机。一个进程在向管道写入数据后,另一进程就可以从管道的另一端将其读取出来。

  • 管道的特点:

1、管道是半双工的,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道;

2、只能用于父子进程或者兄弟进程之间(具有亲缘关系的进程)。比如fork或exec创建的新进程,在使用exec创建新进程时,需要将管道的文件描述符作为参数传递给exec创建的新进程。当父进程与使用fork创建的子进程直接通信时,发送数据的进程关闭读端,接受数据的进程关闭写端。

3、单独构成一种独立的文件系统:管道对于管道两端的进程而言,就是一个文件,但它不是普通的文件,它不属于某种文件系统,而是自立门户,单独构成一种文件系统,并且只存在与内存中。

4、数据的读出和写入:一个进程向管道中写的内容被管道另一端的进程读出。写入的内容每次都添加在管道缓冲区的末尾,并且每次都是从缓冲区的头部读出数据。

  • 管道的实现机制:

管道是由内核管理的一个缓冲区,相当于我们放入内存中的一个纸条。管道的一端连接一个进程的输出。这个进程会向管道中放入信息。管道的另一端连接一个进程的输入,这个进程取出被放入管道的信息。一个缓冲区不需要很大,它被设计成为环形的数据结构,以便管道可以被循环利用。当管道中没有信息的话,从管道中读取的进程会等待,直到另一端的进程放入信息。当管道被放满信息的时候,尝试放入信息的进程会等待,直到另一端的进程取出信息。当两个进程都终结的时候,管道也自动消失。

管道只能在本地计算机中使用,而不可用于网络间的通信。

pipe函数原型:

#include <unistd.h>   
int pipe(int file_descriptor[2]);//建立管道,该函数在数组上填上两个新的文件描述符后返回0,失败返回-1。  
eg.int fd[2]  
int result = pipe(fd);  

通过使用底层的read和write调用来访问数据。 向file_descriptor[1]写数据,从file_descriptor[0]中读数据。写入与读取的顺序原则是先进先出

  • 管道读写规则

当没有数据可读时:

O_NONBLOCK disable:read调用阻塞,即进程暂停执行,一直等到有数据来到为止。

O_NONBLOCK enable:read调用返回-1,errno值为EAGAIN。

当管道满的时候

O_NONBLOCK disable:write调用阻塞,直到有进程读走数据

O_NONBLOCK enable:调用返回-1,errno值为EAGAIN

如果所有管道写端对应的文件描述符被关闭,则read返回0

如果所有管道读端对应的文件描述符被关闭,则write操作会产生信号SIGPIPE

当要写入的数据量不大于PIPE_BUF(Posix.1要求PIPE_BUF至少512字节)时,linux将保证写入的原子性。

当要写入的数据量大于PIPE_BUF时,linux将不再保证写入的原子性。

## 命名管道(FIFO)

命名管道是一种特殊类型的文件,它在系统中以文件形式存在。这样克服了管道的弊端,他可以允许没有亲缘关系的进程间通信。

创建管道的两个系统调用原型:

#include <sys/types.h>   
#include <sys/stat.h>   
int mkfifo(const char *filename,mode_t mode); //建立一个名字为filename的命名管道,参数mode为该文件的权限(mode%~umask),若成功则返回0,否则返回-1,错误原因存于errno中。  
eg.mkfifo( "/tmp/cmd_pipe", S_IFIFO | 0666 );  

具体操作方法只要创建了一个命名管道然后就可以使用open、read、write等系统调用来操作。创建可以手工创建或者程序中创建。

int mknod(const char *path, mode_t mode, dev_t dev); //第一个参数表示你要创建的文件的名称,第二个参数表示文件类型,第三个参数表示该文件对应的设备文件的设备号。只有当文件类型为 S_IFCHR 或 S_IFBLK 的时候该文件才有设备号,创建普通文件时传入0即可。  
eg.mknod(FIFO_FILE,S_IFIFO|0666,0);    
  • 管道和命名管道的区别:

对于命名管道FIFO来说,IO操作和普通管道IO操作基本一样,但是两者有一个主要的区别,在命名管道中,管道可以是事先已经创建好的,比如我们在命令行下执行

mkfifo myfifo

就是创建一个命名通道,我们必须用open函数来显示地建立连接到管道的通道,而在管道中,管道已经在主进程里创建好了,然后在fork时直接复制相关数据或者是用exec创建的新进程时把管道的文件描述符当参数传递进去。

一般来说FIFO和PIPE一样总是处于阻塞状态。也就是说如果命名管道FIFO打开时设置了读权限,则读进程将一直阻塞,一直到其他进程打开该FIFO并向管道写入数据。这个阻塞动作反过来也是成立的。如果不希望命名管道操作的时候发生阻塞,可以在open的时候使用O_NONBLOCK标志,以关闭默认的阻塞操作。

信号

信号机制是unix系统中最为古老的进程之间的通信机制,用于一个或几个进程之间传递异步信号。信号可以有各种异步事件产生,比如键盘中断等。shell也可以使用信号将作业控制命令传递给它的子进程。

  • 使用方法定义:
#include <sys/types.h>
#include <signal.h>
void (*signal(int sig,void (*func)(int)))(int); //用于截取系统信号,第一个参数为信号,第二个参数为对此信号挂接用户自己的处理函数指针。返回值为以前信号处理程序的指针。
eg.int ret = signal(SIGSTOP, sig_handle);

由于signal不够健壮,推荐使用sigaction函数。

int kill(pid_t pid,int sig); //kill函数向进程号为pid的进程发送信号,信号值为sig。当pid为0时,向当前系统的所有进程发送信号sig。  
int raise(int sig);//向当前进程中自举一个信号sig, 即向当前进程发送信号。  
#include <unistd.h>   
unsigned int alarm(unsigned int seconds); //alarm()用来设置信号SIGALRM在经过参数seconds指定的秒数后传送给目前的进程。如果参数seconds为0,则之前设置的闹钟会被取消,并将剩下的时间返回。使用alarm函数的时候要注意alarm函数的覆盖性,即在一个进程中采用一次alarm函数则该进程之前的alarm函数将失效。  
int pause(void); //使调用进程(或线程)睡眠状态,直到接收到信号,要么终止,或导致它调用一个信号捕获函数。  

消息队列

消息队列是内核地址空间中的内部链表,通过linux内核在各个进程直接传递内容,消息顺序地发送到消息队列中,并以几种不同的方式从队列中获得,每个消息队列可以用IPC标识符唯一地进行识别。内核中的消息队列是通过IPC的标识符来区别,不同的消息队列直接是相互独立的。每个消息队列中的消息,又构成一个独立的链表。

消息队列克服了信号承载信息量少,管道只能承载无格式字符流。

  • 消息队列头文件
#include <sys/types.h>   
#include <sys/stat.h>   
#include <sys/msg.h>   
  • 消息缓冲区结构
struct msgbuf{  
    long mtype;  
    char mtext[1];//柔性数组  
}  

在结构中有两个成员,mtype为消息类型,用户可以给某个消息设定一个类型,可以在消息队列中正确地发送和接受自己的消息。mtext为消息数据,采用柔性数组,用户可以重新定义msgbuf结构。例如:

struct msgbuf{  
    long mtype;  
    char mtext[1];//柔性数组  
}  

当然用户不可随意定义msgbuf结构,因为在linux中消息的大小是有限制的,在linux/msg.h中定义如下:

#define MSGMAX 8192

消息总的大小不能超过8192个字节,包括mtype成员(4个字节)。

  • msqid_ds内核数据结构。
<div style="font-family: 微软雅黑; font-size: 14px; line-height: 21px;">struct msgid_ds{</div><div style="font-family: 微软雅黑; font-size: 14px; line-height: 21px;">   struct ipc_perm msg_perm{</div><div style="font-family: 微软雅黑; font-size: 14px; line-height: 21px;">   time_t msg_stime;</div><div style="font-family: 微软雅黑; font-size: 14px; line-height: 21px;">   time_t msg_rtime;</div><div style="font-family: 微软雅黑; font-size: 14px; line-height: 21px;">   time_t msg_ctime;</div><div style="font-family: 微软雅黑; font-size: 14px; line-height: 21px;">   unsigned long _msg_cbuyes;</div><div style="font-family: 微软雅黑; font-size: 14px; line-height: 21px;">    ..........</div><div style="font-family: 微软雅黑; font-size: 14px; line-height: 21px;">   };</div>

Linux内核中,每个消息队列都维护一个结构体,此结构体保存着消息队列当前状态信息,该结构体在头文件linux/msg.h中定义。

  • ipc_perm内核数据结构
struct ipc_perm{  
  key_t key;  
  uid_t uid;  
  gid_t gid;  
  .......  
};  

结构体ipc_perm保存着消息队列的一些重要的信息,比如说消息队列关联的键值,消息队列的用户id组id等。它定义在头文件linux/ipc.h中。

常用函数:

key_t ftok( const char * fname, int id );//参数一为目录名称, 参数二为id。如指定文件的索引节点号为65538,换算成16进制为0x010002,而你指定的ID值为38,换算成16进制为0x26,则最后的key_t返回值为0x26010002。
eg.key_t key = key =ftok(".", 1);
int msgget(key_t key,int msgflag); //msgget用来创建和访问一个消息队列。程序必须提供一个键值来命名特定的消息队列。
eg.int msg_id = msgget(key, IPC_CREATE | IPC_EXCL | 0x0666);//根据关键字创建一个新的队列(IPC_CREATE),如果队列存在则出错(IPC_EXCL),拥有对文件的读写执行权限(0666)。
int msgsnd(int msgid,const void *msgptr,size_t msg_sz,int msgflg); //msgsnd函数允许我们把一条消息添加到消息队列中。msgptr只想准备发送消息的指针,指针结构体必须以一个长整型变量开始。
eg.struct msgmbuf{
    int mtype;
    char mtext[10];
};
struct msgmbuf msg_mbuf;
msg_mbuf.mtype = 10;//消息大小10字节
memcpy(msg_mbuf.mtext, "测试消息", sizeof("测试消息"));
int ret = msgsnd(msg_id, &msg_mbuf, sizeof("测试消息"), IPC_NOWAIT);
int msgrcv(int msgid, void *msgptr, size_t msg_sz, long int msgtype, int msgflg); //msgrcv可以通过msqid对指定消息队列进行接收操作。第二个参数为消息缓冲区变量地址,第三个参数为消息缓冲区结构大小,但是不包括mtype成员长度,第四个参数为mtype指定从队列中获取的消息类型。
eg.int ret = msgrcv(msg_id, &msg_mbuf, 10, 10, IPC_NOWAIT | MSG_NOERROR);
int msgctl(int msqid,int cmd,struct msqid_ds *buf); //msgctl函数主要是一些控制如删除消息队列等操作。 cmd值如下:
IPC_STAT:获取队列的msgid_ds结构,并把它存到buf指向的地址。
IPC_SET:将队列的msgid_ds设置为buf指向的msgid_ds。
IPC_RMID:内核删除消息队列,最后一项填NULL, 执行操作后,内核会把消息队列从系统中删除。
  • 消息队列的本质

Linux的消息队列(queue)实质上是一个链表,它有消息队列标识符(queue ID)。 msgget创建一个新队列或打开一个存在的队列;msgsnd向队列末端添加一条新消息;msgrcv从队列中取消息, 取消息是不一定遵循先进先出的, 也可以按消息的类型字段取消息。

时间: 2024-12-09 20:09:02

20155301 滕树晨linux基础——linux进程间通信(IPC)机制总结的相关文章

Linux基础 linux系统中的批量删除文件与空文件删除的命令介绍

Linux基础教程  linux系统中的批量删除文件与空文件删除的命令介绍 Linux资料下面删除文件或者目录命令rm(remove): Linux培训功能说明:删除文件或目录. 语 法:rm [-dfirv][--help][--version][文件或目录...] 补充说明:执行rm指令可删除文件或目录,如欲删除目录必须加上参数"-r",否则预设仅会删除文件. 参 数: -d或--directory 直接把欲删除的目录的硬连接数据删成0,删除该目录. -f或--force 强制删除

Linux进程间通信(IPC)机制总览

Linux进程间通信 Ø  管道与消息队列 ü  匿名管道,命名管道 ü  消息队列 Ø  信号 ü  信号基础 ü  信号应用 Ø  锁与信号灯 ü  记录锁 ü  有名信号灯 ü  无名信号灯(基于内存的信号灯) Ø  共享内存 ü  共享内存介绍 ü  文件映射内存方式 ü  共享内存对象方式 为什么需要进程间通信 Ø  数据传输代表:管道 FIFO 消息队列 SOCKET Ø  事件通知代表:信号 Ø  分工协作代表:锁和信号灯 Ø  高效数据共享代表:共享内存 进程间通信主要分支及演进

Linux进程间通信 --- IPC机制(转)

在linux下的多个进程间的通信机制叫做IPC(Inter-Process Communication),它是多个进程之间相互沟通的一种方法.在linux下有多种进程间通信的方法:半双工管道.命名管道.消息队列.信号.信号量.共享内存.内存映射文件,套接字等等.使用这些机制可以为linux下的网络服务器开发提供灵活而又坚固的框架. 1. 管道 (PIPE)    管道实际是用于进程间通信的一段共享内存,创建管道的进程称为管道服务器,连接到一个管道的进程为管道客户机.一个进程在向管道写入数据后,另

Linux 基础 —— Linux 进程的管理与监控

这篇文章主要讲 Linux 中进程的概念和进程的管理工具.原文:http://liaoph.com/inux-process-management/ 进程的概念 什么是进程 进程(Process)是计算机中程序执的实体.程序通常是由指令和相关数据组成的,在 Linux 系统中,程序的运行通常是由用户通过一个命令行解释器(例如 bash shell)发起执行,或者由其他进程派生而来. 进程标识符 每个进程都有一个非负整数表示的唯一标识符,进程运行时 PID 是由操作系统随机分配的,进程 ID 可以

Linux基础※※※※Linux中的画图工具

kolourPaint类似于Win中个mspaint Ubuntu安装:sudo apt-get install kolourpaint4 图1 kolourPaint界面

Linux基础-Linux命令帮助汇总

获取内部命令帮助? help COMMAND 获取外部命令帮助? COMMAND --help ps: 根据type命令,可以判断COMMAND是内/外部命令 eg: [[email protected] ~]# type history history is a shell builtin  #则表示history为一个shell内部命令 我们则可以使用help history来获取该命令的帮助信息 重头戏----man命令---- man是manual,手册的意思 man有1-9章节,调用命

Linux基础-Linux常用命令表格整理

命令 含义     cd .. 进入home目录     pwd 获取当前路径(绝对路径)     ls -a 查看隐藏文件     cd 切换目录     .. 上一级目录     - 上一次所在目录     ~ 当前用户的home目录     touch 新建空白文件     mkdir 创建空白文件     cp XXX 路径/路径 复制文件到指定目录     cp -r 复制目录     rm 删除文件     rm -f 强制删除文件     rm -r 删除目录     mv 源目录

Linux基础-Linux中的磁盘(1)

磁盘 磁盘分区:将硬盘划分成多个逻辑存储单元 逻辑存储分区单元:分区 分区的益处: 1.限制应用或用户的可用空间 2.允许同一块硬盘安装不同的操作系统 3.可以给虚拟内存一个单独的分区 4.提高硬盘的使用性能 磁盘 磁道 扇区(磁盘的最小单位-512字节) MBR-Main Boot Record(主引导记录):告诉硬盘如何进行分区,写在磁盘的第一个扇区中 特点:(主分区可分为扩展分区,扩展分区可分为逻辑分区) 1.主分区最多可以分4个主分区 2.使用扩展分区和逻辑分区可以支持15个分区 3.允

Linux基础-Linux系统回收站

rm / mv : 自己做一个回收站 --思路 cd mkdir .recycle # 隐藏文件夹 .recycle mv .txt .recycle/ # 把想要删除的文件移动到.recycle当中 通过定时任务定期清除 .recycle 文件夹中的内容 或者rm -rf ./recycle/ --回收站示例 !/bin/bash alias rm='mv' if [-f /tmp/.recycle] then echo ".recycle is CUNZAI" else touch