洛谷 P3387 【模板】缩点

P3387 【模板】缩点

题目背景

缩点+DP

题目描述

给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大。你只需要求出这个权值和。

允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次。

输入输出格式

输入格式:

第一行,n,m

第二行,n个整数,依次代表点权

第三至m+2行,每行两个整数u,v,表示u->v有一条有向边

输出格式:

共一行,最大的点权之和。

输入输出样例

输入样例#1: 复制

2 2
1 1
1 2
2 1

输出样例#1: 复制

2

说明

n<=10^4,m<=10^5,|点权|<=1000 算法:Tarjan缩点+DAGdp

#include<map>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 100010
using namespace std;
queue<int>que;
map<int,int>ma[MAXN];
int n,m;
int sumcol,ans;
int tot,tot1,tim,top;
int col[MAXN],into[MAXN];
int val[MAXN],cost[MAXN],dis[MAXN];
int to[MAXN],net[MAXN],head[MAXN];
int to1[MAXN],net1[MAXN],head1[MAXN];
int low[MAXN],dfn[MAXN],vis[MAXN],stack[MAXN],visstack[MAXN];
void add(int u,int v){
    to[++tot]=v;net[tot]=head[u];head[u]=tot;
}
void add1(int u,int v){
    to1[++tot1]=v;net1[tot1]=head1[u];head1[u]=tot1;
}
void tarjin(int now){
    stack[++top]=now;
    low[now]=dfn[now]=++tim;
    vis[now]=1;
    visstack[now]=1;
    for(int i=head[now];i;i=net[i])
        if(visstack[to[i]])
            low[now]=min(low[now],dfn[to[i]]);
        else if(!vis[to[i]]){
            tarjin(to[i]);
            low[now]=min(low[now],low[to[i]]);
        }
    if(dfn[now]==low[now]){
        sumcol++;
        col[now]=sumcol;
        while(stack[top]!=now){
            col[stack[top]]=sumcol;
            visstack[stack[top]]=0;
            top--;
        }
        visstack[now]=0;
        top--;
    }
}
void spfa(int s){
    memset(dis,0,sizeof(dis));
    memset(vis,0,sizeof(vis));
    while(!que.empty())    que.pop();
    dis[s]=cost[s];
    vis[s]=1;
    que.push(s);
    while(!que.empty()){
        int now=que.front();
        que.pop();
        vis[now]=0;
        for(int i=head1[now];i;i=net1[i])
            if(dis[to1[i]]<dis[now]+cost[to1[i]]){
                dis[to1[i]]=dis[now]+cost[to1[i]];
                if(!vis[to1[i]]){
                    vis[to1[i]]=1;
                    que.push(to1[i]);
                }
            }
    }
    for(int i=1;i<=sumcol;i++)    ans=max(ans,dis[i]);
}
int main(){
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)    scanf("%d",&val[i]);
    for(int i=1;i<=m;i++){
        int u,v;
        scanf("%d%d",&u,&v);
        add(u,v);
    }
    for(int i=1;i<=n;i++)
        if(!vis[i])
            tarjin(i);
    for(int i=1;i<=n;i++)
        for(int j=head[i];j;j=net[j])
            if(col[i]!=col[to[j]])
                if(ma[col[i]].find(col[to[j]])==ma[col[i]].end()){
                    ma[col[i]][col[to[j]]]=1;
                    into[col[to[j]]]++;
                    add1(col[i],col[to[j]]);
                }
    for(int i=1;i<=n;i++)    cost[col[i]]+=val[i];
    for(int i=1;i<=sumcol;i++)
        if(!into[i])
            spfa(i);
    cout<<ans;
}
时间: 2024-10-10 23:14:55

洛谷 P3387 【模板】缩点的相关文章

洛谷P3387 【模板】缩点

洛谷P3387 [模板]缩点 题目背景 缩点+DP 题目描述 给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次. 输入输出格式 输入格式: 第一行,n,m 第二行,n个整数,依次代表点权 第三至m+2行,每行两个整数u,v,表示u->v有一条有向边 输出格式: 共一行,最大的点权之和. 输入输出样例 输入样例#1: 2 2 1 1 1 2 2 1 输出样例#1: 2 说

【C++】最近公共祖先LCA(Tarjan离线算法)&amp;&amp; 洛谷P3379LCA模板

1.前言 首先我们介绍的算法是LCA问题中的离线算法-Tarjan算法,该算法采用DFS+并查集,再看此算法之前首先你得知道并查集(尽管我相信你如果知道这个的话肯定是知道并查集的),Tarjan算法的优点在于相对稳定,时间复杂度也比较居中,也很容易理解(个人认为). 2.思想 下面详细介绍一下Tarjan算法的思想: 1.任选一个点为根节点,从根节点开始. 2.遍历该点u所有子节点v,并标记这些子节点v已被访问过. 3.若是v还有子节点,返回2,否则下一步. 4.合并v到u上. 5.寻找与当前点

AC自动机(附洛谷P3769模板题)

首先,介绍一下AC自动机(Aho-Corasick automaton),是一种在一个文本串中寻找每一个已给出的模式串的高效算法. 在学习AC自动机之前,你需要先学习Trie树和KMP算法,因为AC自动机正式利用并结合了两者的思想. 说到实际的不同,其实AC自动机只是在Trie树上引入了一个类似KMP中next数组的东西叫做Fail指针. 对于每一个节点,Fail指针指向该节点所代表的字符串中,次长的.在Trie树中存在的后缀(因为最长的在Trie树种存在的后缀就是其本身)所代表的节点. 举例:

洛谷P3375 [模板]KMP字符串匹配

To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果你不知道这是什么意思也不要问,去百度搜[kmp算法]学习一下就知道了. 输入输出格式 输入格式: 第一行为一个字符串,即为s1(仅包含大写字母) 第二行为一个字符串,即为s2(仅包含大写字母) 输出格式: 若干行,每行包含一个整数,表示s2在s1中出现的位置 接下来1行,包括length(s2)个整

洛谷.3803.[模板]多项式乘法(FFT)

题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. #include <cmath> #include <cctype> #include <cstdio> #include <algorithm> #define gc() getchar() const int N=1e6+5; const double PI=acos(-1); int n,m; struct Complex { double

洛谷.1919.[模板]A乘B Problem升级版(FFT)

题目链接:洛谷.BZOJ2179 //将乘数拆成 a0*10^n + a1*10^(n-1) + ... + a_n-1的形式 //可以发现多项式乘法就模拟了竖式乘法 所以用FFT即可 注意处理进位 //n位*n位最多就只有2n位了 //论putchar的速度..还是快的 #include <cmath> #include <cstdio> #include <cctype> #include <algorithm> #define gc() getchar

洛谷P3387 缩点模板

给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次. 因为可以重复经过点,所以一个点所在的强联通分量必定可以到达.所以直接缩点即可. 缩点之后,我们要让权值最大化,必须从入度为0的点开始搜.因为这是DAG,入度不为零的点的最后祖先必定是入度为零的点.由于这道题没有负数权值,从入度为零的结点开始走肯定是一个最好的选择.然后DAG上跑动归即可. 1 #include <cst

Tarjan缩点模板 (洛谷P3387)

题目背景 缩点+DP 题目描述 给定一个n个点m条边有向图,每个点有一个权值,求一条路径,使路径经过的点权值之和最大.你只需要求出这个权值和. 允许多次经过一条边或者一个点,但是,重复经过的点,权值只计算一次. 输入输出格式 输入格式: 第一行,n,m 第二行,n个整数,依次代表点权 第三至m+2行,每行两个整数u,v,表示u->v有一条有向边 输出格式: 共一行,最大的点权之和. 输入输出样例 输入样例#1: 复制 2 2 1 1 1 2 2 1 输出样例#1: 复制 2 说明 n<=10^

洛谷 [P2483] [模板] k短路

人生中的第一道黑题... 其实就是k短路模板 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <cstdlib> #include <queue> using namespace std; const int MAXN=400005; int init(){ int