HDU 1431 素数回文(打表+技巧,最大回文素数为9989899!!!)

素数回文

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 17512    Accepted Submission(s): 4033

Problem Description

xiaoou33对既是素数又是回文的数特别感兴趣。比如说151既是素数又是个回文。现在xiaoou333想要你帮助他找出某个范围内的素数回文数,请你写个程序找出 a 跟b 之间满足条件的数。(5 <= a < b <= 100,000,000);

Input

这里有许多组数据,每组包括两组数据a跟b。

Output

对每一组数据,按从小到大输出a,b之间所有满足条件的素数回文数(包括a跟b)每组数据之后空一行。

Sample Input

5 500

Sample Output

5
7
11
101
131
151
181
191
313
353
373
383

Author

xiaoou333

Source

zjut

原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1431

范围内的最大回文素数为9989899,可以节省好多时间

如果不用筛选法判断素数,判断回文素数的时候先判断回文数,否则会超时,因为素数比回文数多许多!!!

AC代码:

#include <iostream>
#include <cstring>
using namespace std;
#define maxn 9989899+1//最大的结果为9989899
bool isPrime[maxn+1];
int ans[800];//编程得满足条件的数字共781个
void getPrime()
{
    memset(isPrime,true,sizeof(isPrime));
    for (int i=2;i<maxn ;i++ )
    {
        if(isPrime[i])
        {
            //cout<<i<<endl;
            for (int j=i+i;j<maxn ;j+=i )
            {
                isPrime[j]=false;
            }
        }
    }
}
bool isHuiwen(int n)
{
    int sum=0,nn=n;
    while (n)
    {
        sum=sum*10+n%10;
        n/=10;
    }
    return sum==nn;
}
int main()
{
   int a,b;
   getPrime();
   int k=0;
   for(int i=2;i<maxn;i++)
   {
       if(isPrime[i]&&isHuiwen(i))
        ans[k++]=i;
   }
   //cout<<k<<endl;
   while (cin>>a>>b)
   {
        for (int i=0;i<=k ;i++ )
        {
            if(ans[i]<a)
                continue;
            else if(ans[i]>b)
                break;
            else
                cout<<ans[i]<<endl;
        }
        cout<<endl;
   }

    return 0;
}

AC代码2:(以前的代码,可怕呀)

#include <stdio.h>
int sushu(int n);
int huiwen(int n);
int main()
{
    int i,x=0,a,b,t;
    int h[780]= {      5,      7,     11,    101,    131,    151,    181,    191,    313,    353,
                       373,    383,    727,    757,    787,    797,    919,    929,  10301,  10501,
                       10601,  11311,  11411,  12421,  12721,  12821,  13331,  13831,  13931,  14341,
                       14741,  15451,  15551,  16061,  16361,  16561,  16661,  17471,  17971,  18181,
                       18481,  19391,  19891,  19991,  30103,  30203,  30403,  30703,  30803,  31013,
                       31513,  32323,  32423,  33533,  34543,  34843,  35053,  35153,  35353,  35753,
                       36263,  36563,  37273,  37573,  38083,  38183,  38783,  39293,  70207,  70507,
                       70607,  71317,  71917,  72227,  72727,  73037,  73237,  73637,  74047,  74747,
                       75557,  76367,  76667,  77377,  77477,  77977,  78487,  78787,  78887,  79397,
                       79697,  79997,  90709,  91019,  93139,  93239,  93739,  94049,  94349,  94649,
                       94849,  94949,  95959,  96269,  96469,  96769,  97379,  97579,  97879,  98389,
                       98689,1003001,1008001,1022201,1028201,1035301,1043401,1055501,1062601,1065601,
                       1074701,1082801,1085801,1092901,1093901,1114111,1117111,1120211,1123211,1126211,
                       1129211,1134311,1145411,1150511,1153511,1160611,1163611,1175711,1177711,1178711,
                       1180811,1183811,1186811,1190911,1193911,1196911,1201021,1208021,1212121,1215121,
                       1218121,1221221,1235321,1242421,1243421,1245421,1250521,1253521,1257521,1262621,
                       1268621,1273721,1276721,1278721,1280821,1281821,1286821,1287821,1300031,1303031,
                       1311131,1317131,1327231,1328231,1333331,1335331,1338331,1343431,1360631,1362631,
                       1363631,1371731,1374731,1390931,1407041,1409041,1411141,1412141,1422241,1437341,
                       1444441,1447441,1452541,1456541,1461641,1463641,1464641,1469641,1486841,1489841,
                       1490941,1496941,1508051,1513151,1520251,1532351,1535351,1542451,1548451,1550551,
                       1551551,1556551,1557551,1565651,1572751,1579751,1580851,1583851,1589851,1594951,
                       1597951,1598951,1600061,1609061,1611161,1616161,1628261,1630361,1633361,1640461,
                       1643461,1646461,1654561,1657561,1658561,1660661,1670761,1684861,1685861,1688861,
                       1695961,1703071,1707071,1712171,1714171,1730371,1734371,1737371,1748471,1755571,
                       1761671,1764671,1777771,1793971,1802081,1805081,1820281,1823281,1824281,1826281,
                       1829281,1831381,1832381,1842481,1851581,1853581,1856581,1865681,1876781,1878781,
                       1879781,1880881,1881881,1883881,1884881,1895981,1903091,1908091,1909091,1917191,
                       1924291,1930391,1936391,1941491,1951591,1952591,1957591,1958591,1963691,1968691,
                       1969691,1970791,1976791,1981891,1982891,1984891,1987891,1988891,1993991,1995991,
                       1998991,3001003,3002003,3007003,3016103,3026203,3064603,3065603,3072703,3073703,
                       3075703,3083803,3089803,3091903,3095903,3103013,3106013,3127213,3135313,3140413,
                       3155513,3158513,3160613,3166613,3181813,3187813,3193913,3196913,3198913,3211123,
                       3212123,3218123,3222223,3223223,3228223,3233323,3236323,3241423,3245423,3252523,
                       3256523,3258523,3260623,3267623,3272723,3283823,3285823,3286823,3288823,3291923,
                       3293923,3304033,3305033,3307033,3310133,3315133,3319133,3321233,3329233,3331333,
                       3337333,3343433,3353533,3362633,3364633,3365633,3368633,3380833,3391933,3392933,
                       3400043,3411143,3417143,3424243,3425243,3427243,3439343,3441443,3443443,3444443,
                       3447443,3449443,3452543,3460643,3466643,3470743,3479743,3485843,3487843,3503053,
                       3515153,3517153,3528253,3541453,3553553,3558553,3563653,3569653,3586853,3589853,
                       3590953,3591953,3594953,3601063,3607063,3618163,3621263,3627263,3635363,3643463,
                       3646463,3670763,3673763,3680863,3689863,3698963,3708073,3709073,3716173,3717173,
                       3721273,3722273,3728273,3732373,3743473,3746473,3762673,3763673,3765673,3768673,
                       3769673,3773773,3774773,3781873,3784873,3792973,3793973,3799973,3804083,3806083,
                       3812183,3814183,3826283,3829283,3836383,3842483,3853583,3858583,3863683,3864683,
                       3867683,3869683,3871783,3878783,3893983,3899983,3913193,3916193,3918193,3924293,
                       3927293,3931393,3938393,3942493,3946493,3948493,3964693,3970793,3983893,3991993,
                       3994993,3997993,3998993,7014107,7035307,7036307,7041407,7046407,7057507,7065607,
                       7069607,7073707,7079707,7082807,7084807,7087807,7093907,7096907,7100017,7114117,
                       7115117,7118117,7129217,7134317,7136317,7141417,7145417,7155517,7156517,7158517,
                       7159517,7177717,7190917,7194917,7215127,7226227,7246427,7249427,7250527,7256527,
                       7257527,7261627,7267627,7276727,7278727,7291927,7300037,7302037,7310137,7314137,
                       7324237,7327237,7347437,7352537,7354537,7362637,7365637,7381837,7388837,7392937,
                       7401047,7403047,7409047,7415147,7434347,7436347,7439347,7452547,7461647,7466647,
                       7472747,7475747,7485847,7486847,7489847,7493947,7507057,7508057,7518157,7519157,
                       7521257,7527257,7540457,7562657,7564657,7576757,7586857,7592957,7594957,7600067,
                       7611167,7619167,7622267,7630367,7632367,7644467,7654567,7662667,7665667,7666667,
                       7668667,7669667,7674767,7681867,7690967,7693967,7696967,7715177,7718177,7722277,
                       7729277,7733377,7742477,7747477,7750577,7758577,7764677,7772777,7774777,7778777,
                       7782877,7783877,7791977,7794977,7807087,7819187,7820287,7821287,7831387,7832387,
                       7838387,7843487,7850587,7856587,7865687,7867687,7868687,7873787,7884887,7891987,
                       7897987,7913197,7916197,7930397,7933397,7935397,7938397,7941497,7943497,7949497,
                       7957597,7958597,7960697,7977797,7984897,7985897,7987897,7996997,9002009,9015109,
                       9024209,9037309,9042409,9043409,9045409,9046409,9049409,9067609,9073709,9076709,
                       9078709,9091909,9095909,9103019,9109019,9110119,9127219,9128219,9136319,9149419,
                       9169619,9173719,9174719,9179719,9185819,9196919,9199919,9200029,9209029,9212129,
                       9217129,9222229,9223229,9230329,9231329,9255529,9269629,9271729,9277729,9280829,
                       9286829,9289829,9318139,9320239,9324239,9329239,9332339,9338339,9351539,9357539,
                       9375739,9384839,9397939,9400049,9414149,9419149,9433349,9439349,9440449,9446449,
                       9451549,9470749,9477749,9492949,9493949,9495949,9504059,9514159,9526259,9529259,
                       9547459,9556559,9558559,9561659,9577759,9583859,9585859,9586859,9601069,9602069,
                       9604069,9610169,9620269,9624269,9626269,9632369,9634369,9645469,9650569,9657569,
                       9670769,9686869,9700079,9709079,9711179,9714179,9724279,9727279,9732379,9733379,
                       9743479,9749479,9752579,9754579,9758579,9762679,9770779,9776779,9779779,9781879,
                       9782879,9787879,9788879,9795979,9801089,9807089,9809089,9817189,9818189,9820289,
                       9822289,9836389,9837389,9845489,9852589,9871789,9888889,9889889,9896989,9902099,
                       9907099,9908099,9916199,9918199,9919199,9921299,9923299,9926299,9927299,9931399,
                       9932399,9935399,9938399,9957599,9965699,9978799,9980899,9981899,9989899
                };
    while (scanf("%d %d",&a,&b)!=EOF)
    {
        if (a>b)
        {
            t=a;
            a=b;
            b=a;
        }
        if (b>9989899) b=9989899;
        for (i=0;i<780;i++)
        {
            if (h[i]>=a&&h[i]<=b)
            printf("%d\n",h[i]);
        }
        printf("\n");
    }

    return 0;
}
/*
int sushu(int n)
{
    int i;
    if (n<=1) return 0;
    for (i=2; i*i<n+1; i++)
    {
        if (n%i==0)
            return 0;
    }
    return 1;
}

int huiwen(int n)
{
    int x=0,tempn;
    tempn=n;
    while (n)
    {
        x=x*10+n%10;
        n/=10;
    }
    if (x==tempn) return 1;
    else return 0;
}

*/
时间: 2024-12-10 03:48:32

HDU 1431 素数回文(打表+技巧,最大回文素数为9989899!!!)的相关文章

hdu 1431 素数回文(暴力打表,埃托色尼筛法)

这题开始想时,感觉给的范围5 <= a < b <= 100,000,000太大,开数组肯定爆内存,而且100000000也不敢循环,不超时你打我,反正我是不敢循环. 这题肯定得打表,筛素数肯定用埃托色尼筛法(不好意思把大名鼎鼎的埃拉托色尼名字打错了,表打我). 再看当你所找的回文数的位数为偶数时,有如下定理除11外所有偶数位数的回文数都能被11整除,所以所有偶数位数的回文都不是素数. 证明看如下(我手写的) 手机像素渣(凑活着吧)字丑也凑和着. 证完后我们在来说题目给的数据范围 所以当

HDU 1431 素数回文(回文素数)

http://acm.hdu.edu.cn/showproblem.php?pid=1431 题意: 给你两个整数a,b.(5 <= a < b <= 100,000,000)要你按顺序输出[a,b]区间内的所有回文素数. 分析: 定理:如果一个数是回文且有偶数位,那么它能被11整除. 根据上面定理我们可知我们只需要找到区间[2,1000W)内的素数即可.(想想为什么)上面b的范围直接缩小了10倍. 剩下的工作就是用筛选法求出1000W内的所有素数,然后对于给定的a和b,我们对于[a,b

hdu 1431

? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

回文数 第N个回文数

判断回文数还是不难,如果能转为字符串就更简单了. 如果是求第N个回文数呢. 12321是一个回文数,这里先考虑一半的情况. 回文数的个数其实是有规律的.如: 1位回文数: 9个 2位回文数: 9个 3位回文数: 90个 4位回文数: 90个 5位回文数: 900个 6位回文数: 900个 … 我们看到9.90.900,是不是很有规律,那是什么原因?很简单,我们把回文数拆开两半 [123321]来看.两半的变化一样的,那我们只算其中一半就行了.首位不能是0,所以左半最小为 100,最大为999,共

hdu acm 1425 sort(哈希表思想)

sort Time Limit: 6000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 25803    Accepted Submission(s): 7764 Problem Description 给你n个整数,请按从大到小的顺序输出其中前m大的数. Input 每组测试数据有两行,第一行有两个数n,m(0<n,m<1000000),第二行包含n个各不相同,且

利用闪回查看Oracle表历史时刻数据

利用闪回查看Oracle表历史时刻数据 1.查看表历史时刻数据 select * from tab_test AS OF TIMESTAMP to_timestamp('20140917 10:00:00','yyyymmdd hh24:mi:ss'); 2.利用flashback table恢复表到过去某一时刻 alter table tab_test enable row movement; flashback table tab_test to timestamp ('20140917 1

hdu 5351 MZL&#39;s Border 打表+高精度

MZL's Border Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 462    Accepted Submission(s): 127 Problem Description As is known to all, MZL is an extraordinarily lovely girl. One day, MZL was pl

ACM/ICPC 算法训练 之 &quot;打表&quot;思路(防超时) ——附加素数筛选法

何为"打表"呢,说得简单点就是: 有时候与其重复运行同样的算法得出答案,还不如直接用算法把这组数据所有可能的答案都枚举出来存到一个足够大的容器中去-例如数组(打表),然后再输入数据的时候,直接遍历容器,检索这个数据是否有题意要求的结果. 举一个几乎所有程序员都知道的简单例子= =: 求素数(POJ 1595)-Prime cuts 这一题大意是给出 多组N(1~1000)和C,让你从N内素数的中间项向外扩展C个素数,比如给出7 1,素数有5个(注意此题出题人坑爹得让1作为"素

hdu 4923 Room and Moor(线性表)

题目链接:hdu 4923 Room and Moor 题目大意:给定一个序列a,元素由0,1组成,求一个序列b,元素在0~1之间,并且保证递增.输出最小的∑(ai?bi)2, 解题思路:首先剔除为首的0,和末尾的1,然后将中间部分成若干段由连续1开头,连续0结尾的各个段落.对于每一段有一个最优的值x=aa+b(a为1的个数,b为0的个数),用栈维护各个段的x值,如果当前x值小于前面一个段的x值,那么就要将两个段合并,a=ai?1+ai,b=bi?1+bi. #include <cstdio>