Long Dominoes
Time Limit: 1000ms
Memory Limit: 65536KB
This problem will be judged on CodeForcesGym. Original ID: 100212E
64-bit integer IO format: %I64d Java class name: (Any)
Find the number of ways to tile an m*n rectangle with long dominoes -- 3*1 rectangles.
Each domino must be completely within the rectangle, dominoes must not overlap (of course, they may touch each other), each point of the rectangle must be covered.
Input
The input contains several cases. Each case stands two integers m and n (1 <= m <= 9, 1 <= n <= 30) in a single line. The input ends up with a case of m = n = 0.
Output
Output the number of ways to tile an m*n rectangle with long dominoes.
Sample Input
3 3 3 10 0 0
Sample Output
2 28
Source
Andrew Stankevich‘s Contest #4
Author
Andrew Stankevich
解题:状压dp
1 #include <bits/stdc++.h> 2 using namespace std; 3 typedef long long LL; 4 const int maxn = 1<<18; 5 LL dp[2][maxn]; 6 vector<int>g[maxn]; 7 bool tab[10][10]; 8 int stx[maxn],tot; 9 void dfs(int row,int st,int n) { 10 if(row == n) { 11 int tst = 0; 12 for(int i = n-1; i >= 0; --i) { 13 tst <<= 2; 14 tst |= tab[i][1]|(tab[i][2]<<1); 15 } 16 g[tst].push_back(st); 17 stx[tot++] = tst; 18 stx[tot++] = st; 19 return; 20 } 21 if(!tab[row][0]) { 22 if(!tab[row][1] && !tab[row][2]) { 23 tab[row][0] = tab[row][1] = tab[row][2] = true; 24 dfs(row + 1,st,n); 25 tab[row][0] = tab[row][1] = tab[row][2] = false; 26 } 27 if(row + 3 > n || tab[row + 1][0] || tab[row + 2][0]) return; 28 tab[row + 2][0] = tab[row + 1][0] = tab[row][0] = true; 29 dfs(row + 3,st,n); 30 tab[row + 2][0] = tab[row + 1][0] = tab[row][0] = false; 31 } else dfs(row + 1,st,n); 32 } 33 void init(int st,int n) { 34 memset(tab,false,sizeof tab); 35 for(int i = 0,xst = st; i < n; ++i,xst >>= 2) { 36 int row = xst&3; 37 tab[i][0] = row&1; 38 tab[i][1] = (row>>1)&1; 39 if(row == 2) return; 40 } 41 dfs(0,st,n); 42 } 43 int main() { 44 freopen("dominoes.in","r",stdin); 45 freopen("dominoes.out","w",stdout); 46 int m,n; 47 scanf("%d%d",&m,&n); 48 for(int i = 0; i < (1<<(m + m)); ++i) init(i,m); 49 sort(stx,stx + tot); 50 tot = unique(stx,stx + tot) - stx; 51 int cur = dp[0][0] = 1; 52 for(int i = 1; i <= n; ++i) { 53 for(int j = 0; j < tot; ++j) { 54 for(int k = g[stx[j]].size()-1; k >= 0; --k) 55 dp[cur][stx[j]] += dp[cur^1][g[stx[j]][k]]; 56 } 57 cur ^= 1; 58 memset(dp[cur],0,sizeof dp[cur]); 59 } 60 printf("%I64d\n",dp[cur^1][0]); 61 return 0; 62 }
时间: 2024-11-10 07:29:54