Andrew Ng机器学习课程笔记(二)之逻辑回归

Andrew Ng机器学习课程笔记(二)之逻辑回归

版权声明:本文为博主原创文章,转载请指明转载地址

http://www.cnblogs.com/fydeblog/p/7364598.html

前言

学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新!

这篇博客主要记录了Andrew Ng课程第二章逻辑回归的笔记,主要介绍了梯度下降法,逻辑回归的损失函数,多类别分类等等

简要介绍:逻辑回归算法是分类算法,我们将它作为分类算法使用。有时候可能因为这个算法的名字中出现了回归”使你感到困惑,但逻辑回归算法实际上是一种分类算法,它适用于标签 y 取值离散的情况,如:1 0 0 1。比如对邮件进行分类,垃圾邮件用表示,非垃圾邮件用0表示。

实现算法:梯度下降算法

1. 建立逻辑回归假设

括号内的 x跟线性回归的一样,主要是套上g(x),压缩它的函数值范围,方便分类判决。

g(x)的表达式如下:

根据这个函数特性,我们可以知道,g(z)的范围是在(0,1),函数图形如下:

当hθ大于等于0.5时,预测 y=1;当hθ小于 0.5 时,预测 y=0。

2.建立代价函数

对于线性回归模型,我们定义的代价函数是所有模型误差的平方和。理论上来说,我们也可以对逻辑回归模型沿用这个定义,但是问题在于,当我们将带入到这样定义了的代价函数中时,我们得到的代价函数将是一个非凸函数( non-convex function)

如下图所示

这意味着我们的代价函数有许多局部最小值,这将影响梯度下降算法寻找全局最小值。所以需要定义新的代价函数

hθ(x)与 Cost(hθ(x),y)之间的关系如下图所示:

这样构建的Cost(hθ(x),y)函数的特点是: 当实际的y=1且hθ也为1时误差为0,当y=1但hθ不为1时误差随着 hθ的变小而变大;当实际的
y=0 且hθ也为 0 时代价为
0,当 y=0 但 hθ不为0时误差随着 hθ的变大而变大。这样符合单调性,就可以使用梯度下降法。

于是代价函数定义如下

3. 参数更新迭代

这个与线性回归相同

4. 多类别分类: 一对多

很多时候,我们分类的数目是多个的,这里介绍一个叫做"一对多" (one-vs-all) 的分类算法。

我们将多个类中的一个类标记为正向类(y=1),然后将其他所有类都标记为负向类,如图

在我们需要做预测时,我们将所有的分类机都运行一遍,然后对每一个输入变量,都选择最高可能性的输出变量。(就是比较图中三个hθ(x),找到最大值,并判断为相应的类型)

时间: 2024-10-14 04:48:44

Andrew Ng机器学习课程笔记(二)之逻辑回归的相关文章

Andrew Ng机器学习课程笔记(五)之应用机器学习的建议

Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录了Andrew Ng课程第五章应用机器学习的建议,主要介绍了在测试新数据出现较大误差该怎么处理,这期间讲到了数据集的分类,偏差,方差,学习曲线等概念,帮

Andrew Ng机器学习课程笔记(四)之神经网络

Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新! 这篇博客主要记录Andrew Ng课程第四章和第五章的神经网络,主要介绍前向传播算法,反向传播算法,神经网络的多类分类,梯度校验,参数随机初始化,参数的更新等等 1.神经网络概述

Andrew Ng 机器学习课程笔记 ———— 通过初步的神经网络实现手写数字的识别(尽力去向量化实现)

上一篇我总结了自己在学完逻辑回归后,实现了对手写数字的初步识别 , 在学完了Andrew教授的神经网络简易教程后,趁着知识刚学完没多久,记下了自己在运用简易神经网络实现手写数字识别过程中的总结和问题 ^_^  菜鸡QP的第二篇学习笔记 ~ 错误在所难免 ,希望自己可以通过一篇篇菜鸡的笔记心得 ,取得一点点的进步 ~\(≧▽≦)/~    ) 依旧是给定 5000个20 * 20像素点的手写数字图片 ,与前几天自己完成的逻辑回归完成任务不同 ,这次自己终于要用到极富魅力的神经网络啦(虽然只是最基础

Andrew Ng机器学习课程10补充

Andrew Ng机器学习课程10补充 VC dimension 讲到了如果通过最小化训练误差,使用一个具有d个参数的hypothesis class进行学习,为了学习好,一般需要参数d的线性关系个训练样本.到这里需要指出一点,这个结果是基于empirical risk minimization得到的,而对于那些大部分的discriminative的学习算法采用的通过最小化training error或者training error的近似值,前面推导的结论并不总是可以用,而对于non_ERM 学

Andrew Ng机器学习课程17(2)

Andrew Ng机器学习课程17(2) 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 说明:主要介绍了利用value iteration和policy iteration两种迭代算法求解MDP问题,还介绍了在实际应用中如何通过积累"经验"更新对转移概率和reward的估计的学习模型,并结合两种迭代算法进行求解的完整过程. 2015-10-11 艺少 版权声明:本文为博主原创文章,转载请注明出处http://blog.csdn.net/lg1

斯坦福CS229机器学习课程笔记二:GLM广义线性模型与Logistic回归

一直听闻Logistic Regression逻辑回归的大名,比如吴军博士在<数学之美>中提到,Google是利用逻辑回归预测搜索广告的点击率.因为自己一直对个性化广告感兴趣,于是疯狂google过逻辑回归的资料,但没有一个网页资料能很好地讲清到底逻辑回归是什么.幸好,在CS229第三节课介绍了逻辑回归,第四节课介绍了广义线性模型,综合起来总算让我对逻辑回归有了一定的理解.与课程的顺序相反,我认为应该先了解广义线性模型再来看逻辑回归,也许这也是为什么讲逻辑回归的网页资料总让人感觉云里雾里的原因

Stanford coursera Andrew Ng 机器学习课程编程作业(Exercise 2)及总结

Exercise 1:Linear Regression---实现一个线性回归 关于如何实现一个线性回归,请参考:http://www.cnblogs.com/hapjin/p/6079012.html Exercise 2:Logistic Regression---实现一个逻辑回归 问题描述:用逻辑回归根据学生的考试成绩来判断该学生是否可以入学. 这里的训练数据(training instance)是学生的两次考试成绩,以及TA是否能够入学的决定(y=0表示成绩不合格,不予录取:y=1表示录

Stanford coursera Andrew Ng 机器学习课程第四周总结(附Exercise 3)

Introduction Neural NetWork的由来 先考虑一个非线性分类,当特征数很少时,逻辑回归就可以完成了,但是当特征数变大时,高阶项将呈指数性增长,复杂度可想而知.如下图:对房屋进行高低档的分类,当特征值只有x1,x2,x3时,我们可以对它进行处理,分类.但是当特征数增长为x1,x2....x100时,分类器的效率就会很低了. Neural NetWork模型 该图是最简单的神经网络,共有3层,输入层Layer1:隐藏层Layer2:输出层Layer3,每层都有多个激励函数ai(

Andrew Ng机器学习课程7

回顾 通过定义训练集S={(x(i),y(i));i=1,2,...,m}与线性决策平面(w,b)之间的function margin γ^和geometric margin γ .好的分类决策平面特点得到了一个最优化问题: max(γ,w,b)γ s.t. y(i)(wTx(i)+b)≥γ, ||w||=1 下面要介绍的就是如何解决这个最优化问题,一个思路就是将这个没有"现货"可以解决的优化问题,转变为off-the-shelf的最优化问题的形式,以便直接拿来使用. 最优化问题推导过