经典算法题每日演练——第二十题 三元组

原文:经典算法题每日演练——第二十题 三元组

我们知道矩阵是一个非常强大的数据结构,在动态规划以及各种图论算法上都有广泛的应用,当然矩阵有着不足的地方就是空间和时间

复杂度都维持在N2上,比如1w个数字建立一个矩阵,在内存中会占用1w*1w=1亿的类型空间,这时就会遇到outofmemory。。。那么面

临的一个问题就是如何来压缩矩阵,当然压缩的方式有很多种,这里就介绍一个顺序表的压缩方式:三元组。

一:三元组

有时候我们的矩阵中只有零星的一些非零元素,其余的都是零元素,那么我们称之为稀疏矩阵,当然没有绝对的说有多少个零元素才算稀疏。

针对上面的这个无规律的存放非零元素,三元组提出了一种方法,就是仅仅记录矩阵中的非零元素以及它的行,列以及值N(x,y,v)构成的一个三元

组,标识一个稀疏矩阵的话,还要记录该矩阵的阶数,这样我们就将一个二维的变成了一个一维,极大的压缩的存储空间,这里要注意的就是,三

元组的构建采用“行“是从上到下,“列”也是从左到右的方式构建的顺序表。

 1         /// <summary>
 2         /// 三元组
 3         /// </summary>
 4         public class Unit
 5         {
 6             public int x;
 7             public int y;
 8             public int element;
 9         }
10
11         /// <summary>
12         /// 标识矩阵
13         /// </summary>
14         public class SPNode
15         {
16             //矩阵总行数
17             public int rows;
18
19             //矩阵总列数
20             public int cols;
21
22             //非零元素的个数
23             public int count;
24
25             //矩阵中非零元素
26             public List<Unit> nodes = new List<Unit>();
27         }

其实说到这里也就差不多了,我们只要知道三元组是用来做矩阵压缩的一个顺序存储方式即可,然后知道怎么用三元组表来做一些常规的矩阵

运算,好了,既然说已经做成线性存储了,那就做个“行列置换”玩玩。

二:行列置换

做行列置换很容易,也就是交换"非零元素"的(x,y)坐标,要注意的就是,原先我们的三元组采用的是”行优先“,所以在做转置的时候需要

遵循"列优先“。

 1         /// <summary>
 2         /// 行转列运算
 3         /// </summary>
 4         /// <param name="spNode"></param>
 5         /// <returns></returns>
 6         public SPNode ConvertSpNode(SPNode spNode)
 7         {
 8             //矩阵元素的x和y坐标进行交换
 9             SPNode spNodeLast = new SPNode();
10
11             //行列互换
12             spNodeLast.rows = spNode.cols;
13             spNodeLast.cols = spNode.rows;
14             spNodeLast.count = spNode.count;
15
16             //循环原矩阵的列数 (行列转换)
17             for (int col = 0; col < spNode.cols; col++)
18             {
19                 //循环三元组行的个数
20                 for (int sp = 0; sp < spNode.count; sp++)
21                 {
22                     var single = spNode.nodes[sp];
23
24                     //找到三元组中存在的相同编号
25                     if (col == single.y)
26                     {
27                         spNodeLast.nodes.Add(new Unit()
28                         {
29                             x = single.y,
30                             y = single.x,
31                             element = single.element
32                         });
33                     }
34                 }
35             }
36
37             return spNodeLast;
38         }

最后是总的代码:

  1 using System;
  2 using System.Collections.Generic;
  3 using System.Linq;
  4 using System.Text;
  5 using System.Diagnostics;
  6 using System.Threading;
  7 using System.IO;
  8
  9 namespace ConsoleApplication2
 10 {
 11     public class Program
 12     {
 13         public static void Main()
 14         {
 15             Martix martix = new Martix();
 16
 17             //构建三元组
 18             var node = martix.Build();
 19
 20             foreach (var item in node.nodes)
 21             {
 22                 Console.WriteLine(item.x + "\t" + item.y + "\t" + item.element);
 23             }
 24
 25             Console.WriteLine("******************************************************");
 26
 27             var mynode = martix.ConvertSpNode(node);
 28
 29             foreach (var item in mynode.nodes)
 30             {
 31                 Console.WriteLine(item.x + "\t" + item.y + "\t" + item.element);
 32             }
 33
 34             Console.Read();
 35         }
 36     }
 37
 38     public class Martix
 39     {
 40         /// <summary>
 41         /// 三元组
 42         /// </summary>
 43         public class Unit
 44         {
 45             public int x;
 46             public int y;
 47             public int element;
 48         }
 49
 50         /// <summary>
 51         /// 标识矩阵
 52         /// </summary>
 53         public class SPNode
 54         {
 55             //矩阵总行数
 56             public int rows;
 57
 58             //矩阵总列数
 59             public int cols;
 60
 61             //非零元素的个数
 62             public int count;
 63
 64             //矩阵中非零元素
 65             public List<Unit> nodes = new List<Unit>();
 66         }
 67
 68         /// <summary>
 69         /// 构建一个三元组
 70         /// </summary>
 71         /// <returns></returns>
 72         public SPNode Build()
 73         {
 74             SPNode spNode = new SPNode();
 75
 76             //遵循行优先的原则
 77             spNode.nodes.Add(new Unit() { x = 0, y = 0, element = 8 });
 78             spNode.nodes.Add(new Unit() { x = 1, y = 2, element = 1 });
 79             spNode.nodes.Add(new Unit() { x = 2, y = 3, element = 6 });
 80             spNode.nodes.Add(new Unit() { x = 3, y = 1, element = 4 });
 81
 82             //4阶矩阵
 83             spNode.rows = spNode.cols = 4;
 84
 85             //非零元素的个数
 86             spNode.count = spNode.nodes.Count;
 87
 88             return spNode;
 89         }
 90
 91         /// <summary>
 92         /// 行转列运算
 93         /// </summary>
 94         /// <param name="spNode"></param>
 95         /// <returns></returns>
 96         public SPNode ConvertSpNode(SPNode spNode)
 97         {
 98             //矩阵元素的x和y坐标进行交换
 99             SPNode spNodeLast = new SPNode();
100
101             //行列互换
102             spNodeLast.rows = spNode.cols;
103             spNodeLast.cols = spNode.rows;
104             spNodeLast.count = spNode.count;
105
106             //循环原矩阵的列数 (行列转换)
107             for (int col = 0; col < spNode.cols; col++)
108             {
109                 //循环三元组行的个数
110                 for (int sp = 0; sp < spNode.count; sp++)
111                 {
112                     var single = spNode.nodes[sp];
113
114                     //找到三元组中存在的相同编号
115                     if (col == single.y)
116                     {
117                         spNodeLast.nodes.Add(new Unit()
118                         {
119                             x = single.y,
120                             y = single.x,
121                             element = single.element
122                         });
123                     }
124                 }
125             }
126
127             return spNodeLast;
128         }
129     }
130 }

时间: 2024-08-07 17:02:41

经典算法题每日演练——第二十题 三元组的相关文章

经典算法题每日演练——第二十四题 梳排序

原文:经典算法题每日演练--第二十四题 梳排序 这篇再看看一个经典的排序,梳排序,为什么取名为梳,可能每个梳都有自己的gap吧,大梳子gap大一点,小梳子gap小一点. 上一篇我们看到鸡尾酒排序是在冒泡排序上做了一些优化,将单向的比较变成了双向,同样这里的梳排序也是在冒泡排序上做了一些优化. 冒泡排序上我们的选择是相邻的两个数做比较,就是他们的gap为1,其实梳排序提出了不同的观点,如果将这里的gap设置为一定的大小, 效率反而必gap=1要高效的多. 下面我们看看具体思想,梳排序有这样一个1.

经典算法题每日演练——第二十二题 奇偶排序

原文:经典算法题每日演练--第二十二题 奇偶排序 这个专题因为各种原因好久没有继续下去了,MM吧...你懂的,嘿嘿,不过还得继续写下去,好长时间不写,有些东西有点生疏了, 这篇就从简单一点的一个“奇偶排序”说起吧,不过这个排序还是蛮有意思的,严格来说复杂度是O(N2),不过在多核的情况下,可以做到 N2 /(m/2)的效率,这里的m就是待排序的个数,当m=100,复杂度为N2 /50,还行把,比冒泡要好点,因为重点是解决问题的奇思妙想. 下面我们看看这个算法是怎么描述的,既然是奇偶,肯定跟位数有

经典算法题每日演练——第二十五题 块状链表

原文:经典算法题每日演练--第二十五题 块状链表 在数据结构的世界里,我们会认识各种各样的数据结构,每一种数据结构都能解决相应领域的问题,每一种数据结构都像 是降龙十八掌中的某一掌,掌掌毙命... 当然每个数据结构,有他的优点,必然就有它的缺点,那么如何创造一种数据结构 来将某两种数据结构进行扬长避短,那就非常完美了.这样的数据结构也有很多,比如:双端队列,还有就是今天讲的 块状链表, 我们都知道 数组 具有 O(1)的查询时间,O(N)的删除,O(N)的插入... 链表 具有 O(N)的查询时

经典算法题每日演练——第二十一题 十字链表

原文:经典算法题每日演练--第二十一题 十字链表 上一篇我们看了矩阵的顺序存储,这篇我们再看看一种链式存储方法“十字链表”,当然目的都是一样,压缩空间. 一:概念 既然要用链表节点来模拟矩阵中的非零元素,肯定需要如下5个元素(row,col,val,down,right),其中: row:矩阵中的行. col:矩阵中的列. val:矩阵中的值. right:指向右侧的一个非零元素. down:指向下侧的一个非零元素. 现在我们知道单个节点该如何表示了,那么矩阵中同行的非零元素的表示不就是一个单链

经典算法题每日演练——第二十三题 鸡尾酒排序

原文:经典算法题每日演练--第二十三题 鸡尾酒排序 这篇我们继续扯淡一下鸡尾酒排序,为了知道为啥取名为鸡尾酒,特意看了下百科,见框框的话,也只能勉强这么说了. 要是文艺点的话,可以说是搅拌排序,通俗易懂点的话,就叫“双向冒泡排序”,我想作为码农的话,不可能不知道冒泡排序, 冒泡是一个单向的从小到大或者从大到小的交换排序,而鸡尾酒排序是双向的,从一端进行从小到大排序,从另一端进行从大 到小排序. 从图中可以看到,第一次正向比较,我们找到了最大值9. 第一次反向比较,我们找到了最小值1. 第二次正向

经典算法题每日演练——第十题 树状数组

原文:经典算法题每日演练--第十题 树状数组 有一种数据结构是神奇的,神秘的,它展现了位运算与数组结合的神奇魅力,太牛逼的,它就是树状数组,这种数据结构不是神人是发现不了的. 一:概序 假如我现在有个需求,就是要频繁的求数组的前n项和,并且存在着数组中某些数字的频繁修改,那么我们该如何实现这样的需求?当然大家可以往 真实项目上靠一靠. ① 传统方法:根据索引修改为O(1),但是求前n项和为O(n). ②空间换时间方法:我开一个数组sum[],sum[i]=a[1]+....+a[i],那么有点意

经典算法题每日演练——第十六题 Kruskal算法

原文:经典算法题每日演练--第十六题 Kruskal算法 这篇我们看看第二种生成树的Kruskal算法,这个算法的魅力在于我们可以打一下算法和数据结构的组合拳,很有意思的. 一:思想 若存在M={0,1,2,3,4,5}这样6个节点,我们知道Prim算法构建生成树是从”顶点”这个角度来思考的,然后采用“贪心思想” 来一步步扩大化,最后形成整体最优解,而Kruskal算法有点意思,它是站在”边“这个角度在思考的,首先我有两个集合. 1. 顶点集合(vertexs): 比如M集合中的每个元素都可以认

经典算法题每日演练——第十五题 并查集

原文:经典算法题每日演练--第十五题 并查集 这一篇我们看看经典又神奇的并查集,顾名思义就是并起来查,可用于处理一些不相交集合的秒杀. 一:场景 有时候我们会遇到这样的场景,比如:M={1,4,6,8},N={2,4,5,7},我的需求就是判断{1,2}是否属于同一个集合,当然实现方法 有很多,一般情况下,普通青年会做出O(MN)的复杂度,那么有没有更轻量级的复杂度呢?嘿嘿,并查集就是用来解决这个问题的. 二:操作 从名字可以出来,并查集其实只有两种操作,并(Union)和查(Find),并查集

经典算法题每日演练——第十二题 线段树

原文:经典算法题每日演练--第十二题 线段树 这一篇我们来看树状数组的加强版线段树,树状数组能玩的线段树一样可以玩,而且能玩的更好,他们在区间求和,最大,平均 等经典的RMQ问题上有着对数时间的优越表现. 一:线段树 线段树又称"区间树”,在每个节点上保存一个区间,当然区间的划分采用折半的思想,叶子节点只保存一个值,也叫单元节点,所 以最终的构造就是一个平衡的二叉树,拥有CURD的O(lgN)的时间. 从图中我们可以清楚的看到[0-10]被划分成线段的在树中的分布情况,针对区间[0-N],最多有