Python 基础之 I/O 模型

一、I/O模型

IO在计算机中指Input/Output,也就是输入和输出。由于程序和运行时数据是在内存中驻留,由CPU这个超快的计算核心来执行,涉及到数据交换的地方,通常是磁盘、网络等,就需要IO接口。

同步(synchronous) IO和异步(asynchronous) IO,阻塞(blocking) IO和非阻塞(non-blocking)IO分别是什么,到底有什么区别?

这个问题其实不同的人给出的答案都可能不同,比如wiki,就认为asynchronous IO和non-blocking IO是一个东西。这其实是因为不同的人的知识背景不同,并且在讨论这个问题的时候上下文(context)也不相同。所以,为了更好的回答这个问题,先限定一下本文的上下文。
本文讨论的背景是Linux环境下的network IO。

Stevens在文章中一共比较了五种IO Model:

  • blocking IO(阻塞IO)
  • nonblocking IO (非阻塞IO)
  • IO multiplexing (IO多路复用)
  • asynchronous IO (异步IO)
  • signal driven IO (信号驱动IO)

由于signal driven IO在实际中并不常用,所以我这只提及剩下的四种IO Model。

再说一下IO发生时涉及的对象和步骤。
对于一个network IO (这里我们以read举例),它会涉及到两个系统对象,一个是调用这个IO的process (or thread),另一个就是系统内核(kernel)。当一个read操作发生时,它会经历两个阶段:

  1. 等待数据准备 (Waiting for the data to be ready)
  2. 将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)

记住这两点很重要,因为这些IO Model的区别就是在两个阶段上各有不同的情况。

二、 blocking IO

在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:

当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。对于network IO来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),这个时候kernel就要等待足够的数据到来。而在用户进程这边,整个进程会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。
所以,blocking IO的特点就是在IO执行的两个阶段都被block了。

三、non-blocking IO

linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:

从图中可以看出,当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回。所以,用户进程其实是需要不断的主动询问kernel数据好了没有。

注意:

在网络IO时候,非阻塞IO也会进行recvform系统调用,检查数据是否准备好,与阻塞IO不一样,”非阻塞将大的整片时间的阻塞分成N多的小的阻塞, 所以进程不断地有机会 ‘被’ CPU光顾”。即每次recvform系统调用之间,cpu的权限还在进程手中,这段时间是可以做其他事情的,也就是说非阻塞的recvform系统调用之后,进程并没有被阻塞,内核马上返回给进程,如果数据还没准备好,此时会返回一个error。进程在返回之后,可以干点别的事情,然后再发起recvform系统调用。重复上面的过程,循环往复的进行recvform系统调用。这个过程通常被称之为轮询。轮询检查内核数据,直到数据准备好,再拷贝数据到进程,进行数据处理。需要注意,拷贝数据整个过程,进程仍然是属于阻塞的状态。

import time
import socket

sk = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sk.bind((‘127.0.0.1‘, 8080))
sk.listen(5)
sk.setblocking(False)   #设置套接字为非阻塞模式
while True:
    try:
        print(‘waiting client connection .......‘)
        connection, address = sk.accept()  # 进程主动轮询
        print("+++", address)
        client_messge = connection.recv(1024)
        print(str(client_messge, ‘utf8‘))
        connection.close()
    except Exception as e:
        print(e)
        time.sleep(4)

#############################client

import time
import socket
sk = socket.socket(socket.AF_INET,socket.SOCK_STREAM)

while True:
    sk.connect((‘127.0.0.1‘, 8080))
    print("hello")
    sk.sendall(bytes("hello", "utf8"))
    time.sleep(2)
    break

实例

以上实例,服务段端每隔4秒轮询一次,若没有任何客户端链接,则会抛出错误信息,并继续轮询。

非阻塞IO:

  • 优点:能够在等待任务完成的时间里干其他活了(包括提交其他任务,也就是 “后台” 可以有多个任务在同时执行)。
  • 缺点:任务完成的响应延迟增大了,因为每过一段时间才去轮询一次read操作,而任务可能在两次轮询之间的任意时间完成,导致不能实时获取数据,这也会导致整体数据吞吐量的降低。

四、IO multiplexing

IO multiplexing这个词可能有点陌生,有些地方也称这种IO方式为event driven IO。我们都知道,select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select/epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。它的流程如图:

当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。

这个图和blocking IO的图其实并没有太大的不同,事实上,还更差一些。因为这里需要使用两个system call (select 和 recvfrom),而blocking IO只调用了一个system call (recvfrom)。但是,用select的优势在于它可以同时处理多个connection。(多说一句。所以,如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接)

在IO multiplexing Model中,实际中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。

注意:

  1. select函数返回结果中如果有文件可读了,那么进程就可以通过调用accept()或recv()来让kernel将位于内核中准备到的数据copy到用户区。
  2. select的优势在于可以处理多个连接,不适用于单个连接
import select, socket

sock = socket.socket()
sock.bind((‘127.0.0.1‘, 8080))
sock.listen(5)

sock.setblocking(False)
listen_obj = [sock, ]

while True:
    r, w, e = select.select(listen_obj, [], [])

    for obj in r:
        if obj == sock:
            conn, addr = obj.accept()
            print(‘conn‘, conn)
            print(‘addr‘, addr)
            listen_obj.append(conn)
        else:
            data = obj.recv(1024)
            print(data.decode(‘utf8‘))
            send_data = input(‘>>>‘)
            obj.send(send_data.encode(‘utf8‘))

#############################client

import socket

sock = socket.socket()
sock.connect((‘127.0.0.1‘, 8080))

while True:
    data = input(‘>>>‘)
    sock.send(data.encode(‘utf8‘))
    recv_data = sock.recv(1024)
    print(recv_data.decode(‘utf8‘))
sock.close()

实例

以上实例,服务端kernel监听select负责的listen_obj中的所有socket对象。当任何一个socket对象激活,根据其类型判断是否建立通信。

五、asynchronous I/O

linux下的asynchronous IO其实用得很少。先看一下它的流程:

用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它收到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。

很明显,使用异步IO来编写程序性能会远远高于同步IO,但是异步IO的缺点是编程模型复杂。

六、IO模型比较

到目前为止,已经将四个IO Model都介绍完了。现在回过头来回答最初的那几个问题:blocking和non-blocking的区别在哪,synchronous IO和asynchronous IO的区别在哪。
先回答最简单的这个:blocking vs non-blocking。前面的介绍中其实已经很明确的说明了这两者的区别。调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。

在说明synchronous IO和asynchronous IO的区别之前,需要先给出两者的定义。Stevens给出的定义(其实是POSIX的定义)是这样子的:

  • A synchronous I/O operation causes the requesting process to be blocked until that I/O operation completes;
  • An asynchronous I/O operation does not cause the requesting process to be blocked;

两者的区别就在于synchronous IO做”IO operation”的时候会将process阻塞。按照这个定义,之前所述的blocking IO,non-blocking IO,IO multiplexing都属于synchronous IO。有人可能会说,non-blocking IO并没有被block啊。这里有个非常“狡猾”的地方,定义中所指的”IO operation”是指真实的IO操作,就是例子中的recvfrom这个system call。non-blocking IO在执行recvfrom这个system call的时候,如果kernel的数据没有准备好,这时候不会block进程。但是,当kernel中数据准备好的时候,recvfrom会将数据从kernel拷贝到用户内存中,这个时候进程是被block了,在这段时间内,进程是被block的。而asynchronous IO则不一样,当进程发起IO 操作之后,就直接返回再也不理睬了,直到kernel发送一个信号,告诉进程说IO完成。在这整个过程中,进程完全没有被block。

各个IO Model的比较如图所示:

经过上面的介绍,会发现non-blocking IO和asynchronous IO的区别还是很明显的。在non-blocking IO中,虽然进程大部分时间都不会被block,但是它仍然要求进程去主动的check,并且当数据准备完成以后,也需要进程主动的再次调用recvfrom来将数据拷贝到用户内存。而asynchronous IO则完全不同。它就像是用户进程将整个IO操作交给了他人(kernel)完成,然后他人做完后发信号通知。在此期间,用户进程不需要去检查IO操作的状态,也不需要主动的去拷贝数据。

七、selectors模块

This module allows high-level and efficient I/O multiplexing, built upon the select module primitives. Users are encouraged to use this module instead, unless they want precise control over the OS-level primitives used.

selectors是对select的封装,能够高效实现I/O复用,推荐使用!

import selectors
import socket

sock = socket.socket()
sock.bind((‘127.0.0.1‘, 8080))
sock.listen(5)
sel = selectors.DefaultSelector()   # 根据具体平台选择最佳IO多路复用机制;linux:epoll(epoll|kqueue|devpoll > poll > select)

def read(conn, mask):
    try:     # 客户端终止,捕获异常并将其从监听列表中移除
        data = conn.recv(1024)
        print(data.decode(‘utf8‘))
        re_data = input(‘>>>‘)
        conn.send(re_data.encode(‘utf8‘))
    except Exception:
        sel.unregister(conn)    # 解除事件注册

def accept(sock, mask):
    conn, addr = sock.accept()
    sel.register(conn, selectors.EVENT_READ, read)      # 注册事件,若conn触发,执行read函数

sel.register(sock, selectors.EVENT_READ, accept)    # 注册事件,若sock触发,执行accept函数

while True:
    print(‘wating...‘)
    events = sel.select()   # 监听
    for key, mask in events:
        func = key.data     # 包含accept和read函数
        obj = key.fileobj   # 包含sock和conn

        func(obj, mask)     # accept(sock, mask);read(conn, mask)

服务端

服务端

import socket

sock = socket.socket()
sock.connect((‘127.0.0.1‘, 8080))

while True:
    data = input(‘>>>‘)
    sock.send(data.encode(‘utf8‘))
    recv_data = sock.recv(1024)
    print(recv_data.decode(‘utf8‘))
sock.close()

客户端

客户端

好了,到这里关于网络编程的知识也就要告一段落了。

时间: 2024-10-10 15:24:16

Python 基础之 I/O 模型的相关文章

Python 基础 - Day 4 Learning Note - Generator 生成器

列表生成器/列表解析 list comprehension 简单灵活地创建列表,通常和lambda(), map(), filter() 一起使用 通过列表生成式, 直接创建列表.但是,收到内容限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问几个元素,那其他的就白占空间.列表生成器能够一边循环一边计算,大大节省大量的空间.是生成器的一种. 只有调用,才能生成. 不支持切片操作,只能通过__next()___一个个取数字. 基本语法

Python基础教程之List对象 转

Python基础教程之List对象 时间:2014-01-19    来源:服务器之家    投稿:root 1.PyListObject对象typedef struct {    PyObject_VAR_HEAD    PyObject **ob_item;    Py_ssize_t allocated;} PyListObject; PyObject_VAR_HEAD中的obsize表示该list对象含有的元素个数, 而allocated表示该list对象占用的内存空间. ob_item

2017传智播客python基础班+就业班

2017传智播客python基础班+就业班  地址:http://www.zygx8.com/thread-6085-1-1.html 本课程包含了Python的基础语法和核心编程,以及Python应用中流行的数据库.前端,Web框架,爬虫框架及其分布式策略等技术,包含了丰富的项目案例.适合零基础或有一定Linux和Python基础的学生,特别适合于大专院校计算机专业的学生,学习过各类视频教程的未就业人士以及在职程序员. python基础 linux操作系统基础 1-Linux以及命令 2-li

python基础之socket编程

python基础之socket编程   一 TCP/IP五层模型 在每一层都工作着不同的设备,比如我们常用的交换机就工作在数据链路层的,一般的路由器是工作在网络层的. 在每一层实现的协议也各不同,即每一层的服务也不同.下图列出了每层主要的协议. 各层功能 注明:ARP和RAPR两个到底属于哪一层呢? 由于IP协议使用了ARP协议,所以经常把ARP协议划到网络层,但是ARP协议是为了从网络层使用的IP地址解析出在数据链路层使用的MAC地址,所以有些地方也把ARP协议划分到数据链路层,但是一般情况下

Python基础教程【读书笔记】 - 2016/7/4

希望通过博客园持续的更新,分享和记录Python基础知识到高级应用的点点滴滴! 第二波:第7章  更加抽象 [总览] 创建自己的对象,是Python的核心概念!Python被称为面向对象的语言.介绍如何创建对象,以及多态.封装.方法.特性.超类以及继承的概念. [7.1] 对象的魔力 面向对象程序设计中的术语对象(object)基本上可以看做数据(特性)以及由一系列可以存取.操作这些数据的方法所组成的集合.对象最重要的优点包括以下几方面: 多态polymorphism:意味着可以对不同类的对象使

Python基础(十)re模块

Python基础阶段快到一段落,下面会陆续来介绍python面向对象的编程,今天主要是补充几个知识点,下面开始今天的内容. 一.反射 反射的作用就是列出对象的所有属性和方法,反射就是告诉我们,这个对象到底是什么,提供了什么功能, 可以伪造Web框架的路由系统. 举个例子: 1 2 >>> dir(json) ['JSONDecodeError', 'JSONDecoder', 'JSONEncoder', '__all__', '__author__', '__builtins__',

工程脚本插件方案 - c集成Python基础篇(VC++嵌入Python)

序: 为什么要集成脚本,怎么在工程中集成Python脚本. 在做比较大型的工程时,一般都会分核心层和业务层.核心层要求实现高效和稳定的基础功能,并提供调用接口供业务层调用的一种标准的框架划分.在实际中根据需求会拆分的更细.外部的表现形式就是一个核心动态库,带着一堆业务业务动态库.通过一个调度程序把这些链接起来,外加一堆配置文件,就形成一个完成的项目. 这种模式在一个团队开发中,工作职责比较容易划分.制定API接口后,开发工作基本可以并行实现,包括后期的功能测试(白盒.黑盒).不管工程使用什么语言

Day6 - Python基础6 面向对象编程

Python之路,Day6 - 面向对象学习 本节内容: 面向对象编程介绍 为什么要用面向对象进行开发? 面向对象的特性:封装.继承.多态 类.方法. 引子 你现在是一家游戏公司的开发人员,现在需要你开发一款叫做<人狗大战>的游戏,你就思考呀,人狗作战,那至少需要2个角色,一个是人, 一个是狗,且人和狗都有不同的技能,比如人拿棍打狗, 狗可以咬人,怎么描述这种不同的角色和他们的功能呢? 你搜罗了自己掌握的所有技能,写出了下面的代码来描述这两个角色 1 2 3 4 5 6 7 8 9 10 11

python基础教程_学习笔记26:好玩的编程

好玩的编程 程序设计的柔术 当大家坐下来并计划应该如何组织程序的时候,对于这个具体的程序,还没有任何的经验.在实现功能的时候,会逐渐地学到对原始设计有用的新知识.不应该无视一路走来所吸取的教训,而应该将它们用于软件的重新设计(或重构)中. 灵活性的实现包括许多方面,下面是其中两个: 原型设计:python最棒的功能之一就是可以快速地编写程序.编写原型程序是更充分地了解问题的一种很好的方法. 配置:灵活性有很多种存在形式.配置的目的就是让程序某部分的改变更简单,对于你和用户来说都是这样. 第三点是