机器学习算法总结(二)

SVM上:这个算法应该是机器学习这门课里最重要的部分了。

首先是SVM的思想:找到超平面,将两类中距离最近的点分的越开越好(直至二者相等)。

然后是函数间隔和几何间隔的定义,二者之间的区别。

接着是超平面模型的建立,看看它是如何将问题转化为凸优化问题的。

SVM第一个难点:拉格朗日对偶。由KKT条件可知,起作用的约束都在边界上,这个会用来解释支持向量。

由KKT条件知,在SVM模型中,只有函数间隔为1的点才是支持向量。

通过对偶解出w,b。对于新出现的样本,只需要和支持向量作内积就可以将其分类。

SVM下:有时候低维不能将样分很好的分类,可以用高维解决,为此引入了核函数,将低维映射到高维。

用线性分类方法求解非线性问题分两步,首先使用一个变换将原空间的数据映射到新的空间,然后在新空间里用线线分类学习方法

从训练数据中学习分类模型。

如果一个核函数是半正定的,则它是有效的。

为了解决离群点问题,引入了罚项。新的模型不仅要使间隔尽量小,还要使误分类点的个数尽量少。

时间: 2024-11-05 16:25:51

机器学习算法总结(二)的相关文章

机器学习算法的R语言实现(二):决策树

1.介绍 ?决策树(decision tree)是一种有监督的机器学习算法,是一个分类算法.在给定训练集的条件下,生成一个自顶而下的决策树,树的根为起点,树的叶子为样本的分类,从根到叶子的路径就是一个样本进行分类的过程. ?下图为一个决策树的例子,见http://zh.wikipedia.org/wiki/%E5%86%B3%E7%AD%96%E6%A0%91 ? 可见,决策树上的判断节点是对某一个属性进行判断,生成的路径数量为该属性可能的取值,最终到叶子节点时,就完成一个分类(或预测).决策树

机器学习算法( 二、K - 近邻算法)

一.概述 k-近邻算法采用测量不同特征值之间的距离方法进行分类. 工作原理:首先有一个样本数据集合(训练样本集),并且样本数据集合中每条数据都存在标签(分类),即我们知道样本数据中每一条数据与所属分类的对应关系,输入没有标签的数据之后,将新数据的每个特征与样本集的数据对应的特征进行比较(欧式距离运算),然后算出新数据与样本集中特征最相似(最近邻)的数据的分类标签,一般我们选择样本数据集中前k个最相似的数据,然后再从k个数据集中选出出现分类最多的分类作为新数据的分类. 二.优缺点 优点:精度高.对

机器学习算法与Python实践之(二)支持向量机(SVM)初级

机器学习算法与Python实践之(二)支持向量机(SVM)初级 机器学习算法与Python实践之(二)支持向量机(SVM)初级 [email protected] http://blog.csdn.net/zouxy09 机器学习算法与Python实践这个系列主要是参考<机器学习实战>这本书.因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法.恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了. 在这一节我们主要是

机器学习算法的R语言实现(二):决策树算法

1.介绍 ?决策树(decision tree)是一种有监督的机器学习算法,是一个分类算法.在给定训练集的条件下,生成一个自顶而下的决策树,树的根为起点,树的叶子为样本的分类,从根到叶子的路径就是一个样本进行分类的过程. ?下图为一个决策树的例子,见http://zh.wikipedia.org/wiki/%E5%86%B3%E7%AD%96%E6%A0%91 ? 可见,决策树上的判断节点是对某一个属性进行判断,生成的路径数量为该属性可能的取值,最终到叶子节点时,就完成一个分类(或预测).决策树

机器学习十大算法(二)

文章来源:https://www.dezyre.com/article/top-10-machine-learning-algorithms/202 本人自行翻译,如有错误,还请指出.后续会继续补充实例及代码实现. 3.机器学习算法概述 3.1 朴素贝叶斯分类器算法 手动分类网页,文档,电子邮件或任何其他冗长的文本注释将是困难且实际上不可能的. 这是朴素贝叶斯分类器机器学习算法来解决. 分类器是从可用类别之一分配总体的元素值的函数. 例如,垃圾邮件过滤是朴素贝叶斯分类器算法的流行应用程序. 此处

《机器学习算法原理与编程实践》学习笔记(二)

(上接第一章) 1.2 对象.矩阵与矢量化编程 1.2.1对象与维度(略) 1.2.2初识矩阵(略) 1.2.3矢量化编程与GPU运算(略) 1.2.4理解数学公式与NumPy矩阵运算 1.矩阵的初始化 #coding:utf-8 import numpy as np #导入NumPy包 #创建3*5的全0矩阵和全1的矩阵 myZero = np.zeros([3,5])#3*5的全0矩阵 print myZero myZero = np.ones([3,5])##3*5的全1矩阵 print

利用机器学习算法寻找网页的缩略图

博客中的文章均为meelo原创,请务必以链接形式注明本文地址 描述一个网页 现在的世界处于一个信息爆炸的时代.微信.微博.新闻网站,每天人们在大海捞针的信息海洋里挑选自己感兴趣的信息.我们是如何判断哪条信息可能会感兴趣?回想一下,你会发现是标题.摘要和缩略图.通过标题.摘要和缩略图,就能够很好地猜测到网页的内容.打开百度搜索引擎,随便搜索一个关键字,每一条搜索结果也正是这三要素构成的. 那么一个自然的问题是搜索引擎是如何找到网页的标题.摘要和缩略图的呢. 寻找网页的标题其实是一个非常简单的问题.

简单易学的机器学习算法——AdaBoost

一.集成方法(Ensemble Method) 集成方法主要包括Bagging和Boosting两种方法,随机森林算法是基于Bagging思想的机器学习算法,在Bagging方法中,主要通过对训练数据集进行随机采样,以重新组合成不同的数据集,利用弱学习算法对不同的新数据集进行学习,得到一系列的预测结果,对这些预测结果做平均或者投票做出最终的预测.AdaBoost算法和GBDT(Gradient Boost Decision Tree,梯度提升决策树)算法是基于Boosting思想的机器学习算法.

【机器学习算法-python实现】采样算法的简单实现

1.背景 采样算法是机器学习中比较常用,也比较容易实现的(出去分层采样).常用的采样算法有以下几种(来自百度知道): 一.单纯随机抽样(simple random sampling) 将调查总体全部观察单位编号,再用抽签法或随机数字表随机抽取部分观察单位组成样本. 优点:操作简单,均数.率及相应的标准误计算简单. 缺点:总体较大时,难以一一编号. 二.系统抽样(systematic sampling) 又称机械抽样.等距抽样,即先将总体的观察单位按某一顺序号分成n个部分,再从第一部分随机抽取第k

【机器学习算法-python实现】矩阵去噪以及归一化

1.背景 项目需要,打算用python实现矩阵的去噪和归一化.用numpy这些数学库没有找到很理想的函数,所以一怒之下自己用标准库写了一个去噪和归一化的算法,效率有点低,不过还能用,大家如果有需要可以拿去. (1)去噪算法:根据概率论的知识,如果一组数据服从正态分布,我们设均值是n,方差是v,那么对于每个离散数值有百分之九十二以上的概率会在(n-3*v,n+3*v)的区间内.所以这里的去噪功能主要是实现如果超出了区间就将这个值标记为区间所能容忍最大值. (2)归一化:找到输入队列最大值max,最