POJ -3253 优先队列 STL

Fence Repair

Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 29658   Accepted: 9643

Description

Farmer John wants to repair a small length of the fence around the pasture. He measures the fence and finds that he needs N (1 ≤ N ≤ 20,000) planks of wood, each having some integer length Li (1 ≤ Li ≤
50,000) units. He then purchases a single long board just long enough to saw into the N planks (i.e., whose length is the sum of the lengths Li). FJ is ignoring the "kerf", the extra length lost to sawdust when a sawcut is made;
you should ignore it, too.

FJ sadly realizes that he doesn‘t own a saw with which to cut the wood, so he mosies over to Farmer Don‘s Farm with this long board and politely asks if he may borrow a saw.

Farmer Don, a closet capitalist, doesn‘t lend FJ a saw but instead offers to charge Farmer John for each of the N-1 cuts in the plank. The charge to cut a piece of wood is exactly equal to its length. Cutting a plank of length 21 costs 21 cents.

Farmer Don then lets Farmer John decide the order and locations to cut the plank. Help Farmer John determine the minimum amount of money he can spend to create the N planks. FJ knows that he can cut the board in various different orders which will
result in different charges since the resulting intermediate planks are of different lengths.

Input

Line 1: One integer N, the number of planks

Lines 2..N+1: Each line contains a single integer describing the length of a needed plank

Output

Line 1: One integer: the minimum amount of money he must spend to make N-1 cuts

Sample Input

3
8
5
8

Sample Output

34

Hint

He wants to cut a board of length 21 into pieces of lengths 8, 5, and 8.

The original board measures 8+5+8=21. The first cut will cost 21, and should be used to cut the board into pieces measuring 13 and 8. The second cut will cost 13, and should be used to cut the 13 into 8 and 5. This would cost 21+13=34. If the 21 was cut into
16 and 5 instead, the second cut would cost 16 for a total of 37 (which is more than 34).

Source

USACO 2006 November Gold

这一题看之后很容易联想到哈夫曼树,但是这一题有 可以使用优先队列来写。所以就在这里介绍一下优先队列。

priority_queue<元素类型,容器类型,比较算子>; 算子有两种1.greater<>2.less<>.

算子的头文件需要加#include<functional>,不然会编译错误。

#include<iostream>
#include<queue>
#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
int main()
{
	priority_queue<int ,vector<int>,greater<int> >q;
	int n,k;
	while(~scanf("%d",&n))
	{
		for(int i=0;i<n;i++)
		{
			scanf("%d",&k);
			q.push(k);
		}
		int temp=0;
		long long ans=0;
		while(q.size()>1)
		{
			temp+=q.top();
			q.pop();
			temp+=q.top();
			q.pop();
			ans+=temp;
			q.push(temp);
			temp=0;
		}
		printf("%lld\n",ans);
	}
	return 0;
}

时间: 2024-10-13 14:52:34

POJ -3253 优先队列 STL的相关文章

POJ 3253 Fence Repair (优先队列)

POJ 3253 Fence Repair (优先队列) Farmer John wants to repair a small length of the fence around the pasture. He measures the fence and finds that he needsN (1 ≤ N ≤ 20,000) planks of wood, each having some integer lengthLi (1 ≤ Li ≤ 50,000) units. He the

POJ 2049 Finding Nemo 优先队列 STL

题目链接:http://poj.org/problem?id=2049 题目利用了<海底总动员>的情节,小丑鱼尼莫迷路了,他老爸去营救他便是题意. 题目给出了这样的地图,说是假设地图由墙和门组成,忽略墙的厚度,地图上有门,没有墙的地方是可以自由行动的问可以经过最少多少道门便可以营救到尼莫. 这个题给的数据是墙的交点为整数点,但鱼爸爸实在非墙的地方自由移动. 因此,这个题有两个难点: 1.如果建图保存地图 2.如何在地图上遍历 由于题目是给出一个点(x,y),来表示一段墙 我便用一对X,Y来表示

【优先队列/huffman】sdut 2848/poj 3253——Fence Repair

来源:点击打开链接 很久很久之前做过这个题,印象中是用优先队列来做,结果一写各种wa了..........翻之前的代码库,发现优先队列的定义出现了问题.. 因为数据很大需要每次都选取两个最短的进行拼装,所以用了优先队列,每两个小的构成父节点,然后把父节点放进去再找两个小的接起来.huffmanTree的逆向思维,接到最后那一个就是最后的答案了. #include <iostream> #include <queue> #include <vector> #include

poj 3253 Fence Repair(优先队列+哈夫曼树)

题目地址:POJ 3253 哈夫曼树的结构就是一个二叉树,每一个父节点都是两个子节点的和.这个题就是可以从子节点向根节点推. 每次选择两个最小的进行合并.将合并后的值继续加进优先队列中.直至还剩下一个元素为止. 代码如下: #include <iostream> #include <stdio.h> #include <string.h> #include <stdlib.h> #include <math.h> #include <cty

POJ 3253 Fence Repair(优先队列,哈夫曼树)

题目 //做哈夫曼树时,可以用优先队列(误?) //这道题教我们优先队列的一个用法:取前n个数(最大的或者最小的) //哈夫曼树 //64位 //超时->优先队列,,,, //这道题的优先队列用于取前2个小的元素 #include <iostream> #include<stdio.h> #include<string.h> #include<algorithm> #include<queue> using namespace std; _

[ACM] POJ 3253 Fence Repair (Huffman树思想,优先队列)

Fence Repair Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 25274   Accepted: 8131 Description Farmer John wants to repair a small length of the fence around the pasture. He measures the fence and finds that he needs N (1 ≤ N ≤ 20,000)

POJ 3253 Fence Repair 类似哈夫曼树的贪心思想

Fence Repair Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 24550   Accepted: 7878 Description Farmer John wants to repair a small length of the fence around the pasture. He measures the fence and finds that he needs N (1 ≤ N ≤ 20,000)

哈夫曼树 POJ 3253 Fence Repair

竟然做过原题,一眼看上去竟然没感觉... 哈夫曼树定义:给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman tree).哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近. 1.路径和路径长度 在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径.通路中分支的数目称为路径长度.若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1. 2.结点的权及带权路径长度 若将树中结点赋给一个有着某

图基本算法 最小生成树 Prim算法(邻接表+优先队列STL)

这篇文章是对<算法导论>上Prim算法求无向连通图最小生成树的一个总结,其中有关于我的一点点小看法. 最小生成树的具体问题可以用下面的语言阐述: 输入:一个无向带权图G=(V,E),对于每一条边(u, v)属于E,都有一个权值w. 输出:这个图的最小生成树,即一棵连接所有顶点的树,且这棵树中的边的权值的和最小. 举例如下,求下图的最小生成树: 这个问题是求解一个最优解的过程.那么怎样才算最优呢? 首先我们考虑最优子结构:如果一个问题的最优解中包含了子问题的最优解,则该问题具有最优子结构. 最小