1、前言
HDF文件是遥感应用中一种常见的数据格式,因为其高度结构化的特点,笔者曾被怎样使用Hadoop处理HDF文件这个问题困扰过相当长的一段时间。于是Google各种解决方式,但都没有找到一种理想的处理办法。也曾參考过HDFGroup官方发的一篇帖子(网址在这里),里面提供了使用Hadoop针对大、中、小HDF文件的处理思路。尽管依据他提供的解决的方法,按图索骥,肯定能解决怎样使用Hadoop处理HDF文件这个问题,但个人感觉方法偏复杂且须要对HDF的数据格式有较深的理解,实现起来不太easy。于是乎,笔者又继续寻找解决方式,最终发现了一种办法,以下将对该方法进行详细说明。
2、MapReduce主程序
这里主要使用到了netcdf的库进行hdf数据流的反序列化工作(netcdf库的下载地址)。与HDF官方提供的Java库不同,netcdf仅利用Java进行HDF文件的读写操作,且这个库支持多种科学数据,包含HDF4、HDF5等多种格式。而HDF的官方Java库中,底层实际仍是用C进行HDF文件的操作。以下贴出MapReduce的Mapper函数代码:
package example; import java.io.ByteArrayInputStream; import java.io.File; import java.io.FileWriter; import java.io.IOException; import java.net.URI; import java.util.List; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FSDataOutputStream; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.BytesWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import ucar.ma2.ArrayShort; import ucar.nc2.Dimension; import ucar.nc2.Group; import ucar.nc2.NetcdfFile; import ucar.nc2.Variable; public class ReadMapper extends Mapper<Text, BytesWritable, Text, BytesWritable> { public void map(Text key, BytesWritable value, Context context) throws IOException, InterruptedException { String fileName = key.toString(); NetcdfFile file = NetcdfFile.openInMemory("hdf4", value.get()); Group dataGroup = (file.findGroup("MOD_Grid_monthly_1km_VI")).findGroup("Data_Fields"); //读取到1_km_monthly_red_reflectance的变量 Variable redVar = dataGroup.findVariable("1_km_monthly_red_reflectance"); short[][] data = new short[1200][1200]; if(dataGroup != null){ ArrayShort.D2 dataArray; //读取redVar中的影像数据 dataArray = (ArrayShort.D2) redVar.read(); List<Dimension> dimList = file.getDimensions(); //获取影像的y方向像元个数 Dimension ydim = dimList.get(0); //获取影像的x方向像元个数 Dimension xdim = dimList.get(1); //遍历整个影像,读取出像元的值 for(int i=0;i<xdim.getLength();i++){ for(int j=0;j<ydim.getLength();j++){ data[i][j] = dataArray.get(i, j); } } } System.out.print(file.getDetailInfo()); } }
注意程序中的NetcdfFile.openInMemory方法,该静态方法支持从byte[]中构造HDF文件,从而实现了HDF文件的反序列化操作。以下贴出主程序的演示样例代码:
package example; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.BytesWritable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.NullOutputFormat; import example.WholeFileInputFormat; public class ReadMain { public boolean runJob(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); // conf.set("mapred.job.tracker", Utils.JOBTRACKER); String rootPath= "/opt/hadoop-2.3.0/etc/hadoop"; //String rootPath="/opt/hadoop-2.3.0/etc/hadoop/"; conf.addResource(new Path(rootPath+"yarn-site.xml")); conf.addResource(new Path(rootPath+"core-site.xml")); conf.addResource(new Path(rootPath+"hdfs-site.xml")); conf.addResource(new Path(rootPath+"mapred-site.xml")); Job job = new Job(conf); job.setJobName("Job name:" + args[0]); job.setJarByClass(ReadMain.class); job.setMapperClass(ReadMapper.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(BytesWritable.class); job.setInputFormatClass(WholeFileInputFormat.class); job.setOutputFormatClass(NullOutputFormat.class); FileInputFormat.addInputPath(job, new Path(args[1])); FileOutputFormat.setOutputPath(job, new Path(args[2])); boolean flag = job.waitForCompletion(true); return flag; } public static void main(String[] args) throws ClassNotFoundException, IOException, InterruptedException { String[] inputPaths = new String[] { "normalizeJob", "hdfs://192.168.168.101:9000/user/hduser/hdf/MOD13A3.A2005274.h00v10.005.2008079143041.hdf", "hdfs://192.168.168.101:9000/user/hduser/test/" }; ReadMain test = new ReadMain(); test.runJob(inputPaths); } }
关于MapReduce主程序有几点值得说明一下:
1、MapReduce数据的输入格式为WholeFileInputFormat.class,即不正确数据进行切分。关于该格式,能够參考另外一篇博客:怎样通过Java程序提交Yarn的计算任务,这里不再赘述。
2、本人用的是Yarn2.3.0来运行计算任务,假设用老版本号的hadoop,如1.2.0,则把以上主程序中的conf.addResource部分的代码删掉就可以。
3、以上MapReduce程序中,仅仅用到了Map函数,未设置Reduce函数。
4、以上程序用到的为HDF4格式的数据,按理说,HDF5格式的数据应该也是支持的。
3、HDF数据的格式
因为HDF数据高度结构化,因此在netcdf库的使用中,须要使用类似于"标签"的方式来訪问HDF中的详细数据。以下贴出netcdf中读出来的HDF数据的详细格式信息(即使用file.getDetailInfo()函数,打印出来的信息):
注意,ReadMapper函数中出现的类似于“MOD_Grid_monthly_1km_VI”、"Data_Fields"等信息,即依据下面HDF数据的格式信息得到的。
netcdf D:/2005-274/MOD13A3.A2005274.h00v08.005.2008079142757.hdf { variables: char StructMetadata.0(32000); char CoreMetadata.0(40874); char ArchiveMetadata.0(6530); group: MOD_Grid_monthly_1km_VI { variables: short _HDFEOS_CRS; :Projection = "GCTP_SNSOID"; :UpperLeftPointMtrs = -2.0015109354E7, 1111950.519667; // double :LowerRightMtrs = -1.8903158834333E7, -0.0; // double :ProjParams = 6371007.181, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0; // double :SphereCode = "-1"; group: Data_Fields { dimensions: YDim = 1200; XDim = 1200; variables: short 1_km_monthly_NDVI(YDim=1200, XDim=1200); :long_name = "1 km monthly NDVI"; :units = "NDVI"; :valid_range = -2000S, 10000S; // short :_FillValue = -3000S; // short :scale_factor = 10000.0; // double :scale_factor_err = 0.0; // double :add_offset = 0.0; // double :add_offset_err = 0.0; // double :calibrated_nt = 5; // int short 1_km_monthly_EVI(YDim=1200, XDim=1200); :long_name = "1 km monthly EVI"; :units = "EVI"; :valid_range = -2000S, 10000S; // short :_FillValue = -3000S; // short :scale_factor = 10000.0; // double :scale_factor_err = 0.0; // double :add_offset = 0.0; // double :add_offset_err = 0.0; // double :calibrated_nt = 5; // int short 1_km_monthly_VI_Quality(YDim=1200, XDim=1200); :_Unsigned = "true"; :long_name = "1 km monthly VI Quality"; :units = "bit field"; :valid_range = 0S, -2S; // short :_FillValue = -1S; // short :Legend = "\n\t Bit Fields Description (Right to Left): \n\t[0-1] : MODLAND_QA [2 bit range]\n\t\t 00: VI produced, good quality \n\t\t 01: VI produced, but check other QA \n\t\t 10: Pixel produced, but most probably cloudy \n\t\t 11: Pixel not produced due to other reasons than clouds \n\t[2-5] : VI usefulness [4 bit range] \n\t\t 0000: Highest quality \n\t\t 0001: Lower quality \n\t\t 0010..1010: Decreasing quality \n\t\t 1100: Lowest quality \n\t\t 1101: Quality so low that it is not useful \n\t\t 1110: L1B data faulty \n\t\t 1111: Not useful for any other reason/not processed \n\t[6-7] : Aerosol quantity [2 bit range] \n\t\t 00: Climatology \n\t\t 01: Low \n\t\t 10: Average \n\t\t 11: High (11) \n\t[8] : Adjacent cloud detected; [1 bit range] \n\t\t 1: Yes \n\t\t 0: No \n\t[9] : Atmosphere BRDF correction performed [1 bit range] \n\t\t 1: Yes \n\t\t 0: No \n\t[10] : Mixed clouds [1 bit range] \n\t\t 1: Yes \n\t\t 0: No \n\t[11-13] : Land/Water Flag [3 bit range] \n\t\t 000: Shallow ocean \n\t\t 001: Land (Nothing else but land) \n\t\t 010: Ocean coastlines and lake shorelines \n\t\t 011: Shallow inland water \n\t\t 100: Ephemeral water \n\t\t 101: Deep inland water \n\t\t 110: Moderate or continental ocean \n\t\t 111: Deep ocean \n\t[14] : Possible snow/ice [1 bit range] \n\t\t 1: Yes \n\t\t 0: No \n\t[15] : Possible shadow [1 bit range] \n\t\t 1: Yes \n\t\t 0: No \n"; short 1_km_monthly_red_reflectance(YDim=1200, XDim=1200); :long_name = "1 km monthly red reflectance"; :units = "reflectance"; :valid_range = 0S, 10000S; // short :_FillValue = -1000S; // short :scale_factor = 10000.0; // double :scale_factor_err = 0.0; // double :add_offset = 0.0; // double :add_offset_err = 0.0; // double :calibrated_nt = 5; // int short 1_km_monthly_NIR_reflectance(YDim=1200, XDim=1200); :long_name = "1 km monthly NIR reflectance"; :units = "reflectance"; :valid_range = 0S, 10000S; // short :_FillValue = -1000S; // short :scale_factor = 10000.0; // double :scale_factor_err = 0.0; // double :add_offset = 0.0; // double :add_offset_err = 0.0; // double :calibrated_nt = 5; // int short 1_km_monthly_blue_reflectance(YDim=1200, XDim=1200); :long_name = "1 km monthly blue reflectance"; :units = "reflectance"; :valid_range = 0S, 10000S; // short :_FillValue = -1000S; // short :scale_factor = 10000.0; // double :scale_factor_err = 0.0; // double :add_offset = 0.0; // double :add_offset_err = 0.0; // double :calibrated_nt = 5; // int short 1_km_monthly_MIR_reflectance(YDim=1200, XDim=1200); :long_name = "1 km monthly MIR reflectance"; :units = "reflectance"; :valid_range = 0S, 10000S; // short :_FillValue = -1000S; // short :Legend = "\n\t The MIR band saved in the VI product is MODIS band 7 \n\t\t Bandwidth : 2105-2155 nm \n\t\t Band center: 2130 nm \n"; :scale_factor = 10000.0; // double :scale_factor_err = 0.0; // double :add_offset = 0.0; // double :add_offset_err = 0.0; // double :calibrated_nt = 5; // int short 1_km_monthly_view_zenith_angle(YDim=1200, XDim=1200); :long_name = "1 km monthly view zenith angle"; :units = "degrees"; :valid_range = -9000S, 9000S; // short :_FillValue = -10000S; // short :scale_factor = 100.0; // double :scale_factor_err = 0.0; // double :add_offset = 0.0; // double :add_offset_err = 0.0; // double :calibrated_nt = 5; // int short 1_km_monthly_sun_zenith_angle(YDim=1200, XDim=1200); :long_name = "1 km monthly sun zenith angle"; :units = "degrees"; :valid_range = -9000S, 9000S; // short :_FillValue = -10000S; // short :scale_factor = 100.0; // double :scale_factor_err = 0.0; // double :add_offset = 0.0; // double :add_offset_err = 0.0; // double :calibrated_nt = 5; // int short 1_km_monthly_relative_azimuth_angle(YDim=1200, XDim=1200); :long_name = "1 km monthly relative azimuth angle"; :units = "degrees"; :valid_range = -3600S, 3600S; // short :_FillValue = -4000S; // short :scale_factor = 10.0; // double :scale_factor_err = 0.0; // double :add_offset = 0.0; // double :add_offset_err = 0.0; // double :calibrated_nt = 5; // int byte 1_km_monthly_pixel_raliability(YDim=1200, XDim=1200); :long_name = "1 km monthly pixel raliability"; :units = "rank"; :valid_range = 0B, 3B; // byte :_FillValue = -1B; // byte :Legend = "\n\t Rank Keys: \n\t\t[-1]: Fill/No Data-Not Processed. \n\t\t [0]: Good data - Use with confidence \n\t\t [1]: Marginal data - Useful, but look at other QA information \n\t\t [2]: Snow/Ice - Target covered with snow/ice\n\t\t [3]: Cloudy - Target not visible, covered with cloud \n"; } } // global attributes: :HDFEOSVersion = "HDFEOS_V2.9"; :_History = "Direct read of HDF4 file through CDM library; HDF-EOS StructMetadata information was read"; :HDF4_Version = "4.2.1 (NCSA HDF Version 4.2 Release 1-post3, January 27, 2006)"; :featureType = "GRID"; }