[詹兴致矩阵论习题参考解答]习题1.13

13. (Li-Poon) 证明: 每个实方阵都可以写成 $4$ 个实正交矩阵的线性组合, 即若 $A$ 是个实方阵, 则存在实正交矩阵 $Q_i$ 和实数 $r_i$, $i=1,2,3,4$, 使得 $$\bex A=r_1Q_1+r_2Q_2+r_3Q_3+r_4Q_4. \eex$$

证明: (1). 先证明: $A$ 的谱范数就是 $A$ 的最大奇异值. 事实上, $$\beex \bea \sen{A}_\infty^2 &=\max_{\sen{x}_2=1}\sen{Ax}_2^2\\ &=\max_{\sen{x}_2=1}x^*A^*Ax\\ &=\max_{\sen{x}_2=1}x^*VV^*A^*U^*UAVV^*x\\ &=\max_{\sen{y}_2=1}y^*\diag(s_1^2,\cdots,s_p^2)y\quad\sex{y=V^*x}\\ &=\max_{\sen{y}_2=1}\sum_{i=1}^p s_i^2|y_i|^2\\ &=s_1^2. \eea \eeex$$ (2). 由奇异值分解, 存在酉阵 $U,V$ 使得 $$\bex \frac{1}{\sen{A}_\infty}UAV =\diag(s_1,\cdots,s_n),\quad 1=s_1\geq s_2\geq \cdots\geq s_n\geq 0. \eex$$ 若 $n=2k$, 则正交阵 $$\bex R=\frac{1}{\sqrt{2}}\sex{\ba{cc} -1&1\\ 1&1 \ea} \eex$$ 使得 $$\bex R^T\sex{\ba{cc} s_{2j-1}&0\\ 0&s_{2j} \ea}R=\sex{\ba{cc} b_j&c_j\\ c_j&b_j \ea},\quad 2b_j=s_{2j-1}+s_{2j},\quad 2c_j=s_{2j}-s_{2j-1}. \eex$$ 如此, $$\beex \bea &\quad \diag(R,\cdots,R)^T \diag(s_1,\cdots,s_n) \diag(R,\cdots,R)\\ &=\diag\sex{ \sex{\ba{cc} b_1&c_1\\ c_1&b_1 \ea},\cdots,\sex{\ba{cc} b_k&c_k\\ c_k&b_k \ea}}\\ &=\frac{1}{2} \diag\sex{ \sex{\ba{cc} b_1&\sqrt{1-b_1}\\ -\sqrt{1-b_1}&b_1 \ea},\cdots,\sex{\ba{cc} b_k&\sqrt{1-b_k}\\ -\sqrt{1-b_k}&b_k \ea}}\\ &\quad+\frac{1}{2} \diag\sex{ \sex{\ba{cc} b_1&-\sqrt{1-b_1}\\ \sqrt{1-b_1}&b_1 \ea},\cdots,\sex{\ba{cc} b_k&-\sqrt{1-b_k}\\ \sqrt{1-b_k}&b_k \ea}}\\ &\quad+\frac{1}{2} \diag\sex{ \sex{\ba{cc} \sqrt{1-c_1}&c_1\\ c_1&-\sqrt{1-c_1} \ea},\cdots,\sex{\ba{cc} \sqrt{1-c_k}&c_k\\ c_k&-\sqrt{1-c_k} \ea} }\\ &\quad+\frac{1}{2} \diag\sex{ \sex{\ba{cc} -\sqrt{1-c_1}&c_1\\ c_1&\sqrt{1-c_1} \ea},\cdots,\sex{\ba{cc} -\sqrt{1-c_k}&c_k\\ c_k&\sqrt{1-c_k} \ea} }. \eea \eeex$$ 于是 $$\bex \frac{2}{\sen{A}_\infty}\diag(R,\cdots,R)^T UAV\diag(R,\cdots,R) \eex$$ 是 $4$ 个实正交阵的和, 而有结论. 若 $n=2k+1$, 则由已证, $$\bex \diag(1,R,\cdots,R)^T \diag(1,s_2,\cdots,s_n) \diag(1,R,\cdots,R) \eex$$ 也是 $4$ 个实正交阵的和的一半. 我们也有结论成立.

时间: 2024-08-03 00:22:31

[詹兴致矩阵论习题参考解答]习题1.13的相关文章

[詹兴致矩阵论习题参考解答]习题6.10

10. 非本原指标为 $k$ 的 $n$ 阶不可约非负矩阵的正元素的个数可能是哪些数呢? 解答: 只需利用定理 6.28 (Frobenius), 探讨 $$\bex f(x_1,\cdots,x_n)=\sum_{i=1}^n x_ix_{i+1} \eex$$ 在条件 $$\bex x_i>0,\quad\sum_{i=1}^n x_i=n \eex$$ 下的最小最大值. 这个我已经注意到了, 不过叫我去做, 可能还是做不出来, 或者说做不全. 努力哦, 有了想法必须要去实现, 不然梦想终归

[詹兴致矩阵论习题参考解答]习题6.9

9. (Hopf) 将 $n$ 阶正矩阵 $A=(a_{ij})$ 的特征值按模从大到小排列为 $$\bex \rho(A)>|\lm_2|\geq \cdot \geq |\lm_n|, \eex$$ 并记 $$\bex \al=\max\sed{a_{ij};1\leq i,j\leq n}, \quad \beta=\min \max\sed{a_{ij};1\leq i,j\leq n}. \eex$$ 则 $$\bex \frac{|\lm_2|}{\rho(A)}\leq \frac

[詹兴致矩阵论习题参考解答]习题7.6

6. 举例说明: 存在那样的实方阵 $A$, $A$ 的零元素的个数大于 $A$ 的 Jordan 标准形的零元素的个数. 解答: 想法就是利用第 5 节的 Jordan 标准形的组合刻画. 既然非对角元的零元素的个数 Jordan 标准形最多. 我们只能让 $A$ 的对角元尽量地多为零, 但其特征值尽量少地为零. 一个例子即为: $$\bex A=\sex{\ba{cccc} 0&-1&&\\ 1&0&1&\\ &0&-1\\ &&

[詹兴致矩阵论习题参考解答]习题3.15

15. 设 $S_n[a,b]$ 表示所有元素属于给定的区间 $[a,b]$ 的 $n$ 阶实对称矩阵的集合. 对于 $j=1,n$ 确定 $$\bex \max\sed{\lm_j(A);\ A\in S_n[a,b]}\mbox{ 和 } \min\sed{\lm_j(A);\ A\in S_n[a,b]}, \eex$$ 以及分别取到最大值和最小值的矩阵. 解答: 对 $0\neq x\in\bbR^n$, $$\beex \bea &\quad x^TAx\\ &=x^TP^T (

[詹兴致矩阵论习题参考解答]习题1.14

14. 如果映射 $f:M_n\to M_n$ 按某个固定的模式将 $M_n$ 中的每个矩阵的元素重排, 则称 $f$ 为一个置换算子. 怎样的置换算子保持矩阵的特征值不变? 保持秩不变? 解答: 置换算子 $f$ 保持矩阵的特征值不变当且仅当存在置换矩阵 $P$, 使得 $$\bex f(A)=PAP^T,\quad \forall\ A\in M_n; \eex$$ 或 $$\bex f(A)=PA^TP^T,\quad \forall\ A\in M_n. \eex$$ 置换算子 $f$

[詹兴致矩阵论习题参考解答]习题2.9

9. 记 $\dps{m=\sex{n\atop k}}$. 复合矩阵映射 $C_k(\cdot): M_n\to M_m$ 是单射吗? 是满射吗? 解答: 当 $k=1$ 时, $C_k(A)$ 就是 $A$ 的每个元素. 故 $C_k$ 是单射也是满射. 当 $k\geq 2$ 时, 一般地, $C_k$ 不是单射, 比如 $$\bex \sex{\ba{cccc} 1&0&\cdots&0\\ 0&0&\cdots&0\\ \vdots&\vd

[詹兴致矩阵论习题参考解答]习题2.8

8. 设 $k\leq m\leq n$. 怎样的矩阵 $A\in M_{m,n}$ 的每条对角线恰好含有 $k$ 个零元素? 解答: 由定理 2.5 (K\"onig), $A$ 的每条对角线都含有 $k$ 个零元素 $\lra$ $A$ 有一个 $r\times s$ 的零子矩阵, $r+s=n+k$; $A$ 有一条对角线含有 $k+1$ 个零元素 $\lra$ $A$ 的任一 $r\times s$ 阶子矩阵非零, $r+s=n+k+1$. 于是 $A$ 的每条对角线恰含有 $k$ 个零

[詹兴致矩阵论习题参考解答]习题2.1

1. 对于怎样的 $A\in M_m$, $B\in M_n$, $A\otimes B=I$? 解答:     写出     $$\bex     A\otimes B=\sex{\ba{ccc}     a_{11}B&\cdots&a_{1n}B\\     \vdots&\ddots&\vdots\\     a_{n1}B&\cdots&a_{nn}B     \ea}.     \eex$$     要使 $A\otimes B=I$, 当且仅当

[詹兴致矩阵论习题参考解答]习题6.3

3. 设 $\lm$ 是一个复数. 证明: 存在非负方阵 $A$ 使得 $\lm$ 是 $A$ 的一个特征值. 证明: (1). 首先 $A$ 的阶数须 $\geq 3$. 当 $n=1$ 时, 非负方阵的特征值为非负实数. 当 $n=2$ 时, 由 $$\beex \bea |\lm I-A|&=\lm^2 -(a_{11}+a_{22})\lm +a_{11}a_{22}-a_{21}a_{12}\\ &=\sez{\lm-\frac{a_{11}+a_{22}}{2}}^2 +a_{

[詹兴致矩阵论习题参考解答]习题6.1

1. 怎样的非负矩阵可逆并且其逆也非负? 解答: 设 $A\geq0$ 可逆, 且其逆 $A^{-1}=B\geq 0$. 则 $$\bex I_n=AB=BA. \eex$$ 对 $A$ 的第 $i$ ($1\leq i\leq n$) 列, 由 $A$ 可逆知 $$\bex \exists\ j,\st a_{ij}>0. \eex$$ 又由 $$\bex a_{ij}b_{jk}\leq \sum_{l=1}^n a_{il}b_{lk}=\delta_{ik} \eex$$ 知 $$\b