LeetCode46 回溯算法求全排列,这次是真全排列

本文始发于个人公众号:TechFlow,原创不易,求个关注


今天是LeetCode的26篇文章,我们来实战一下全排列问题。

在之前的文章当中,我们讲过八皇后、回溯法,也提到了全排列,但是毕竟没有真正写过。今天的LeetCode46题正是让我们生成给定元素的全排列。

题意很简单,只有一句话,给定一个没有重复元素的序列,让我们返回这个序列所有的全排列,并且我们不需要考虑这些排列的顺序。

回溯法

我们在之前的文章当中分析过,全排列问题,可以看成是搜索问题,从而近似成八皇后问题。在八皇后问题当中,我们枚举的是棋盘的每一行当中的皇后放置的位置,而全排列其实也一样,我们要枚举每一个元素放置的位置。不过八皇后当中要求皇后除了不能同行同列之外还不能同对角线,而我们排列元素可以忽略这个要求。也就是说我们把每一行皇后放置的列号看成是每个元素摆放的位置,并且忽略同对角线的限制的话,那么八皇后问题和全排列问题就完全一样了。

如果还不理解,可以参考一下下图,我们给皇后编号,把皇后同样看成是序列当中的元素,那么八皇后的摆放位置刚好可以映射成一种排列。映射的方式非常简单,就是我们忽略行的信息,依次记录下皇后摆放的列号。

如果你能想通这两个看似完全不同的问题当中的相似之处,说明你对搜索问题的理解已经有些入门了。

思路清楚了,总之我们要枚举皇后摆放的状态。你可以按顺序遍历位置,然后枚举各个位置上放置的皇后,也可以顺序遍历皇后,枚举当前皇后可以放置的位置。两者是等价的,你可以根据自己的理解进行操作。

一般来说我喜欢遍历位置,枚举皇后。因为会引起冲突的是皇后,而不是位置。我们往往要判断皇后之间的关系以及皇后的状态,所以我们枚举皇后会比较贴合思路

所以我们把之前八皇后的代码拿过来稍作修改即可,为了放置一个皇后重复放置在多个位置,我们需要存储皇后的状态,即有没有放置过。一般竞赛当中这种标记的变量称为flag,如果标记多个那就是flag数组。更多细节我们来看代码:

class Solution:    def dfs(self, nums, n, i, cur, ret, flag):        if i == n:            ret.append(cur.copy())            return        for p in range(n):            # 遍历所有元素            # 如果p元素已经放置过了,跳过            if flag[p]:                continue            # 当前位置放置p            cur.append(nums[p])            # flag[p]置为True            flag[p] = True            # 递归            self.dfs(nums, n, i+1, cur, ret, flag)            # 回溯            cur.pop()            flag[p] = False            def permute(self, nums: List[int]) -> List[List[int]]:        ret = []        n = len(nums)        # 记录元素i有没有放置过        flag = [False for _ in range(n)]        self.dfs(nums, n, 0, [], ret, flag)        return ret

代码很短,细节也不多,只要理解了我们是按照顺序遍历位置,然后对于每一个位置遍历可以放置的元素,然后递归回溯即可。基本上可以说是模板题,如果理解有难度的话,可以看一下之前详解八皇后问题的文章:

LeetCode 31:递归、回溯、八皇后、全排列一篇文章全讲清楚

其他方法

回溯法是这个问题的标准解法,那么这题还有没有其他方法呢?

其实是有的,也不难,在LeetCode31题的文章,也就是上面那个链接的文章当中我们解决了一个叫做下一个排列的问题。在这道题当中,我们给定一个序列,要求返回在它所有的全排列当中刚好字典序比它大1的排列,这个方法称为next_permutation。

关于next_permutation的计算方法也在链接里,如果有忘记的或者是最近关注的可以点下链接回顾一下,计算方法是完全一样的,我就不再重复了。

LeetCode 31:递归、回溯、八皇后、全排列一篇文章全讲清楚

如果还记得这道题的话就好办了,我们使用它很容易解出当前的问题。因为我们只需要获得给定序列的最小排列,然后不停地调用这个方法就好了,直到没有更大的序列退出即可。从最小的序列一直获取到最大的,当然就是全排列了。

在LeetCode31题当中,这是一个inplace的方法,没有返回值。并且当序列达到最大的时候,会自动再从最小的开始。我们需要稍稍修改一下,加上一个返回值,表示当前的序列是否是最大的。如果序列达到最大,说明我们可以不用继续往下寻找了,我们return一个True,表示可以退出了,否则我们return False,表示还有其他结果。

本质上我们是从最小的排列开始,不停地用一个叫做get_next的方法获取比当前序列大的下一个序列,当没有更大的序列的时候,说明我们已经获得了所有的排列,那么直接返回结果即可。如果忽略get_next当中的逻辑,这个代码其实只有几行:

其实这是一个取巧的办法,利用之前的思路我们完全不用思考,几乎可以无脑得到答案。但是从另外一个角度来说,这也是算法的魅力,毕竟通往终点的路往往不止一条。

最后我们来看下代码,如果你不懂怎么算next_permutation光看注释是很难看懂的,划到上面的链接看看吧。

class Solution:    def get_next(self, nums: List[int]):        """        Do not return anything, modify nums in-place instead.        """        # 长度        n = len(nums)        # 记录图中i-1的位置        pos = n - 1        for i in range(n-1, 0, -1):            # 如果降序破坏,说明找到了i            if nums[i] > nums[i-1]:                pos = i-1                break                        for i in range(n-1, pos, -1):            # 从最后开始找大于pos位置的            if nums[i] > nums[pos]:                # 先交换元素,在进行翻转                nums[i], nums[pos] = nums[pos], nums[i]                # 翻转[pos+1, n]区间                nums[pos+1:] = nums[n:pos:-1]                return False        return True                    def permute(self, nums: List[int]) -> List[List[int]]:        ret = []        # 从小到大排序,获得最小排列        nums = sorted(nums)        ret.append(nums.copy())        # 如果还有下一个排列则继续调用        while not self.get_next(nums):            # 要.copy()是因为Python中存储的引用,如果不加copy            # 会导致当nums发生变化之后,ret中存储的数据也会变化            ret.append(nums.copy())        return ret

今天的问题并不难,只是Medium难度,并且题目的题意还是之前见过的,主要是给大家加深一下回溯算法的映像用的,没什么太多的新内容。

文章的内容就是这些,如果觉得有所收获,请顺手点个关注或者转发吧,你们的举手之劳对我来说很重要。

原文地址:https://www.cnblogs.com/techflow/p/12636563.html

时间: 2024-07-31 15:16:20

LeetCode46 回溯算法求全排列,这次是真全排列的相关文章

回溯算法详解[力扣46:全排列]

解决一个回溯问题,实际上就是一个决策树的遍历过程.你只需要思考 3 个问题: 1.路径:也就是已经做出的选择. 2.选择列表:也就是你当前可以做的选择. 3.结束条件:也就是到达决策树底层,无法再做选择的条件. 如果你不理解这三个词语的解释,没关系,我们后面会用「全排列」和「N 皇后问题」这两个经典的回溯算法问题来帮你理解这些词语是什么意思,现在你先留着印象. 代码方面,回溯算法的框架: result = [] def backtrack(路径, 选择列表): if 满足结束条件: result

排列组合和回溯算法-面试题

排列组合 排列组合通常用于在字符串或序列的排列和组合中,其特点是固定的解法和统一的代码风格.通常有两种方法:第一种是类似动态规划的分期摊还的方式,即保存中间结果,依次附上新元素,产生新的中间结果:第二种是递归法,通常是在递归函数里,使用for循环,遍历所有排列或组合的可能,然后在for循环语句内调用递归函数. 回溯 回溯算法也叫试探法,它是一种系统地搜索问题的解的方法.回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来 ,换一条路再试.用回溯算法解决问题的一般步骤为: 1.定义一个解

穷举递归和回溯算法终结篇

穷举递归和回溯算法 在一般的递归函数中,如二分查找.反转文件等,在每个决策点只需要调用一个递归(比如在二分查找,在每个节点我们只需要选择递归左子树或者右子树),在这样的递归调用中,递归调用形成了一个线性结构,而算法的性能取决于调用函数的栈深度.比如对于反转文件,调用栈的深度等于文件的大小:再比如二分查找,递归深度为O(nlogn),这两类递归调用都非常高效. 现在考虑子集问题或者全排列问题,在每一个决策点我们不在只是选择一个分支进行递归调用,而是要尝试所有的分支进行递归调用.在每一个决策点有多种

从零开始学回溯算法

本文在写作过程中参考了大量资料,不能一一列举,还请见谅. 回溯算法的定义:回溯算法也叫试探法,它是一种系统地搜索问题的解的方法.回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试. 解题的一般步骤是: 1.定义一个解空间,它包含问题的解: 2.利用适于搜索的方法组织解空间: 3.利用深度优先法搜索解空间: 4.利用限界函数避免移动到不可能产生解的子空间. 问题的解空间通常是在搜索问题的解的过程中动态产生的,这是回溯算法的一个重要特性. 话不多说,我们来看几个具体的例子慢

回溯算法入门及经典案例剖析(初学者必备宝典)

前言 基于有需必写的原则,并且当前这个目录下的文章数量为0(都是因为我懒QAQ),作为开局第一篇文章,为初学者的入门文章,自然要把该说明的东西说明清楚,于是...我整理了如下这篇文章,作者水平有限,有不足之处还望大家多多指出~~~ 概念 首先,回溯是什么意思?很多初学者都会问这样的一个问题.我们可以举这样一个例子: 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1 我们看到了如图所示的一个4*4的迷宫了,我们假设数字1标记的位置为道路,数字0标记的位置为一堵墙,一个人由起点(0.0

回溯算法之素数环

using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace SeqListSort { /// <summary> /// <ather> /// lihonglin /// </ather> /// <content> /// 把从1到20这20个数摆成一个环,要求相邻的两个数的和是一个素数. ///分析:用回溯算法,考察所有

Lasvegas+回溯算法解决3SAT问题(C++实现代码)

转载请注明出处:http://blog.csdn.net/zhoubin1992/article/details/46507919 1.SAT问题描述 命题逻辑中合取范式 (CNF) 的可满足性问题 (SAT)是当代理论计算机科学的核心问题, 是一典型的NP 完全问题.在定义可满足性问题SAT之前,先引进一些逻辑符号. 一个 SAT 问题是指: 对于给定的 CNF 是否存在一组关于命题变元的真值指派使得A 为真. 显然, 如果A 为真, 则 CNF 的每个子句中必有一个命题变元为 1 (真) .

谈谈递归和回溯算法的运用

递归和回溯算法的运用 题目描述 有n个士兵站成一列,从第1个士兵前面向后望去,刚好能看到m个士兵,如果站在后面的士兵身高小于或者等于前面某个士兵的身高,那么后面的这个士兵就不能被看到,问这n个士兵有多少种排列方式,刚好在观测位能看到m个士兵? 第一行输入 n 个士兵和 m 个可以看到的士兵(n >= m),第二行输入 n 个士兵的身高,输出为排列方式的种数. 输入: 4 3 1 1 2 3 输出: 6 也就是说,输入数 n, m (n < m),然后输入 n 个正整数到一个数组 a 中,a 数

哈密尔顿回路(旅行售货员问题)的回溯算法

1. 回溯法的基本原理: 回溯算法也叫试探法,它是一种系统地搜索问题的解的方法.回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试.用回溯算法解决问题的一般步骤为: 1.定义一个解空间,它包含问题的解. 2.利用适于搜索的方法组织解空间. 3.利用深度优先法搜索解空间. 4.利用限界函数避免移动到不可能产生解的子空间. 问题的解空间通常是在搜索问题的解的过程中动态产生的,这是回溯算法的一个重要特性. 2.旅行售货员问题的回溯算法实现 算法具体实现主要代码如下: // T