P2467 [SDOI2010]地精部落

题目描述

传说很久以前,大地上居住着一种神秘的生物:地精。

地精喜欢住在连绵不绝的山脉中。具体地说,一座长度为N的山脉H可分为从左到右的N段,每段有一个独一无二的高度Hi,其中Hi是1到N之间的正整数。

如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰。位于边缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边)。

类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷。

地精们有一个共同的爱好——饮酒,酒馆可以设立在山谷之中。地精的酒馆不论白天黑夜总是人声鼎沸,地精美酒的香味可以飘到方圆数里的地方。

地精还是一种非常警觉的生物,他们在每座山峰上都可以设立瞭望台,并轮流担当瞭望工作,以确保在第一时间得知外敌的入侵。

地精们希望这N段山脉每段都可以修建瞭望台或酒馆的其中之一,只有满足这个条件的整座山脉才可能有地精居住。

现在你希望知道,长度为N的可能有地精居住的山脉有多少种。两座山脉A和B不同当且仅当存在一个i,使得Ai≠Bi。由于这个数目可能很大,你只对它除以P的余数感兴趣。

输入输出格式

输入格式:

输入文件goblin.in仅含一行,两个正整数N, P。

输出格式:

输出文件goblin.out仅含一行,一个非负整数,表示你所求的答案对P取余之后的结果。

输入输出样例

输入样例#1: 复制

4 7

输出样例#1: 复制

3

波动数列
#include<bits/stdc++.h>
using namespace std;
#define maxn 5005
typedef long long ll;
#define inf 0x3fffffff

int dp[2][maxn];
int ans=0;
int n,m;

int main()
{
    cin>>n>>m;
    dp[0][2]=1;
    for(int i=3; i<=n; i++) //从3开始因为你最开始只用得到3(i-j+1>=2)
        for(int j=2; j<=i; j++)
            dp[i&1][j]=(dp[i&1][j-1]+dp[(i-1)&1][i-j+1])%m;
    for(int i=2; i<=n; i++)
        ans=(ans+dp[n&1][i])%m;
    cout<<(ans<<1)%m;
    return 0;
}

原文地址:https://www.cnblogs.com/planche/p/8438087.html

时间: 2024-10-29 14:22:05

P2467 [SDOI2010]地精部落的相关文章

P2467 [SDOI2010]地精部落 DP

传送门:https://www.luogu.org/problemnew/show/P2467 参考与学习:https://www.luogu.org/blog/user55639/solution-p2467 题意: 求波动数列 思路: 设dp[i][j] 表示长度为i, 开始位子为j, 且开始位子是波峰. 首先这个波动数列有一些性质: 1: 在一个波动数列中,若两个 i 与 i+1 不相邻,那么我们直接交换这两个数字就可以组成一个新的波动数列: 举个栗子: 5 2 3 1 4 2: 把波动数

luogu P2467 [SDOI2010]地精部落

很有意思的dp计数题目. 思考一下发现开始时山峰和开始是山谷的方案数是相同的 所以我们只需要统计一个即可. 证明的话可以考虑对于任意一种开始时山峰的方案 每个数字变成n-a[i]+1 那么可以此方案还是一个排列 且变成开始时山谷的方案. 考虑统计一个 设f[i][j]表示到了第i个数字 此时放数集合为j的方案数. n*2^n的复杂度当然过不了.之所以有这么高的复杂度 是因为数的集合一直放不下去. 只要我们考虑出和数的大小无关的状态就能降低复杂度. 强行考虑 f[i]表示i个数字所形成的第一个为山

1925: [Sdoi2010]地精部落

1925: [Sdoi2010]地精部落 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1401  Solved: 869[Submit][Status][Discuss] Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N 之间的正 整数. 如果一段山脉比所有与它相邻的山脉都高,则这

BZOJ 1925: [Sdoi2010]地精部落( dp )

和几天前校内的某场NOIP模拟赛T3一模一样... dp(i,j)表示1~i的排列中, 以1~j为开头且开头是下降的合法方案数 这种数列具有对称性, 即对于一个满足题意且开头是上升的n的排列{an}, 令bn = n-an+1, 那么{bn}就是一个满足题意且开头是下降的序列 dp(i,j) = dp(i,j-1) + dp(i-1,i-j+1). 前一个好理解, 就是求排列i, 1~j-1开头的, 后一种就是求以j开头, 那么原来的排列i-1应该以1~j-1开头, 但是开头又得是上升的(这样加

[BZOJ 1925][Sdoi2010]地精部落

1925: [Sdoi2010]地精部落 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1468  Solved: 918[Submit][Status][Discuss] Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N 之间的正 整数. 如果一段山脉比所有与它相邻的山脉都高,则这

【BZOJ1925】[Sdoi2010]地精部落 组合数+DP

[BZOJ1925][Sdoi2010]地精部落 Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N 之间的正 整数. 如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰.位于边 缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边). 类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷. 地精们有一个共同的

[BZ1925] [SDOI2010]地精部落

[BZ1925] [SDOI2010]地精部落 传送门 一道很有意思的DP题. 我们发现因为很难考虑每个排列中的数是否使用过,所以我们想到只维护相对关系. 当我们考虑新的一个位置时,给新的位置的数分配一个排名(可以理解为把这个位置的大小插入在原来两个位置的大小的中间). 所以令\(dp[i][j][0/1]\)表示前i个数,第i个数在前i个数中排名为j,最后两个数是上升/下降时的相对关系的方案数. 那么有: \[ dp[i][j][0]=\sum_{k=1}^{j-1}dp[i-1][k][1]

[bzoj1925][Sdoi2010]地精部落_递推_动态规划

地精部落 bzoj-1925 Sdoi-2010 题目大意:给你一个数n和模数p,求1~n的排列中满足每一个数的旁边两个数,要么一个是边界,要么都比它大,要么都比它小(波浪排列个数) 原文地址:https://www.cnblogs.com/ShuraK/p/9032651.html

bzoj1925 [[Sdoi2010] 地精部落【DP】

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1925 一个多月前"过"了这道题,还自欺欺人地认为懂了这道题,这直接导致了昨晚多校联测2的T3爆炸,现在想来简直是道水题,不过还是要有"懂得这题怎么做"的前提...地精部落这道题可以约化为另一个问题:对于n的排列,告诉你每个数相比于前一个数是大了.小了.还是都可以,求这样的排列的方案数. 先说这一题叭,看过很多其他人的题解,依然是云里雾里,因此我会写的详细一点.