[leetcode-783-Minimum Distance Between BST Nodes]

Given a Binary Search Tree (BST) with the root node root, return the minimum difference between the values of any two different nodes in the tree.

Example :

Input: root = [4,2,6,1,3,null,null]
Output: 1
Explanation:
Note that root is a TreeNode object, not an array.

The given tree [4,2,6,1,3,null,null] is represented by the following diagram:

          4
        /         2      6
     / \
    1   3  

while the minimum difference in this tree is 1, it occurs between node 1 and node 2, also between node 3 and node 2.

Note:

  1. The size of the BST will be between 2 and 100.
  2. The BST is always valid, each node‘s value is an integer, and each node‘s value is different.

思路:

遍历二叉树,将元素值排序,最小的差肯定出现在相邻两个元素里,遍历数组即可。

 1 void preorderTree(TreeNode* root,vector<int>& vc)
 2 {
 3   if(root ==NULL) return ;
 4   vc.push_back(root->val);
 5   preorderTree(root->left,vc);
 6   preorderTree(root->right,vc);
 7 }
 8  int minDiffInBST(TreeNode* root)
 9  {
10    vector<int>vc;
11    preorderTree(root,vc);
12    sort(vc.begin(),vc.end());
13    int t =INT_MAX;
14    for(int i=0;i<vc.size()-1;i++)
15    {
16      t = min(t,vc[i+1] - vc[i]);
17    }
18    return t;
19  }

原文地址:https://www.cnblogs.com/hellowooorld/p/8445419.html

时间: 2024-11-01 12:14:51

[leetcode-783-Minimum Distance Between BST Nodes]的相关文章

leetcode 783. Minimum Distance Between BST Nodes ---中序遍历

过年晚上无聊,233333333 题解: BST树的中序遍历是有序的,遍历过程中,记录前一个值,然后和当前值比较,来更新最小的minimum distance 注意python参数传递时候,像list这些object是传引用,单独int的数是传值的 void getans(TreeNode* root,int &pre,int &ans) { if(root==NULL) return; getans(root->left,pre,ans); if(pre!=INT_MAX) ans

[LeetCode&amp;Python] Problem 783. Minimum Distance Between BST Nodes

Given a Binary Search Tree (BST) with the root node root, return the minimum difference between the values of any two different nodes in the tree. Example : Input: root = [4,2,6,1,3,null,null] Output: 1 Explanation: Note that root is a TreeNode objec

783. Minimum Distance Between BST Nodes BST节点之间的最小距离

Given a Binary Search Tree (BST) with the root node root, return the minimum difference between the values of any two different nodes in the tree. Example : Input: root = [4,2,6,1,3,null,null] Output: 1 Explanation: Note that root is a TreeNode objec

783. Minimum Distance Between BST Nodes

Given a Binary Search Tree (BST) with the root node root, return the minimum difference between the values of any two different nodes in the tree. Example : Input: root = [4,2,6,1,3,null,null] Output: 1 Explanation: Note that root is a TreeNode objec

783. Minimum Distance Between BST Nodes - Easy

Given a Binary Search Tree (BST) with the root node root, return the minimum difference between the values of any two different nodes in the tree. Example : Input: root = [4,2,6,1,3,null,null] Output: 1 Explanation: Note that root is a TreeNode objec

LeetCode 783. 二叉搜索树结点最小距离(Minimum Distance Between BST Nodes)

783. 二叉搜索树结点最小距离 LeetCode783. Minimum Distance Between BST Nodes 题目描述 给定一个二叉搜索树的根结点 root, 返回树中任意两节点的差的最小值. 示例: 输入: root = [4,2,6,1,3,null,null] 输出: 1 解释: 注意: root 是树结点对象 (TreeNode object),而不是数组. 给定的树 [4,2,6,1,3,null,null] 可表示为下图: 4 / 2 6 / \ 1 3 最小的差

LeetCode算法题-Minimum Distance Between BST Nodes(Java实现-四种解法)

这是悦乐书的第314次更新,第335篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第183题(顺位题号是783).给定具有根节点值的二叉搜索树(BST),返回树中任何两个不同节点的值之间的最小差值.示例: 给定的树[4,2,6,1,3,null,null]由下图表示: 4 / 2 6 / \ 1 3 输出:1 说明:请注意,root是TreeNode对象,而不是数组.该树中的任意节点最小差值为1,它发生在节点1和节点2之间,也发生在节点3和节点2之间. 注意: BS

LeetCode OJ - Minimum &amp;&amp; Maximum Depth of Binary Tree

这两道题用递归的解法都很简单,只是稍有不同. 下面是AC代码: 1 /** 2 * Given a binary tree, find its minimum depth. 3 * the minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node. 4 * @param root 5 * @return 6 */ 7 public in

【LeetCode】Minimum Depth of Binary Tree 二叉树的最小深度 java

[LeetCode]Minimum Depth of Binary Tree Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along the shortest path from the root node down to the nearest leaf node. 递归和非递归,此提比较简单.广度优先遍历即可.关键之处就在于如何保持访问深度. 下面是4种代码: 1