洛谷.3834.[模板]可持久化线段树(主席树 静态区间第k小)

题目链接

//离散化后范围1~cnt不要错
#include<cstdio>
#include<cctype>
#include<algorithm>
//#define gc() getchar()
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=2e5+5,MAXIN=2e6;

int n,m,A[N],ref[N],cnt,sum[N*18],tot,son[N*18][2],root[N];
char IN[MAXIN],*SS=IN,*TT=IN;

inline int read()
{
    int now=0,f=1;register char c=gc();
    for(;!isdigit(c);c=gc()) if(c=='-') f=-1;
    for(;isdigit(c);now=now*10+c-'0',c=gc());
    return now*f;
}

int Find(int v)
{
    int l=1,r=cnt,m;
    while(l<r)
        if(ref[m=l+r>>1]<v) l=m+1;
        else r=m;
    return l;
}
void Discrete()
{
    std::sort(ref+1,ref+1+n);
    cnt=1;
    for(int i=2;i<=n;++i)
        if(ref[i]!=ref[i-1]) ref[++cnt]=ref[i];
    for(int i=1;i<=n;++i) A[i]=Find(A[i]);
}
void Build(int x,int &y,int l,int r,int pos)
{
    sum[y=++tot]=sum[x]+1;
    if(l==r) return;
    int m=l+r>>1;
    if(pos<=m) son[y][1]=son[x][1],Build(son[x][0],son[y][0],l,m,pos);
    else son[y][0]=son[x][0],Build(son[x][1],son[y][1],m+1,r,pos);
}
int Query(int x,int y,int l,int r,int k)
{
    if(l==r) return l;
    int m=l+r>>1,tmp=sum[son[y][0]]-sum[son[x][0]];
    if(tmp>=k) return Query(son[x][0],son[y][0],l,m,k);
    else return Query(son[x][1],son[y][1],m+1,r,k-tmp);
}

int main()
{
#ifndef ONLINE_JUDGE
    freopen("3834.in","r",stdin);
#endif

    n=read(),m=read();
    for(int i=1;i<=n;++i) ref[i]=A[i]=read();
    Discrete();
    for(int i=1;i<=n;++i) Build(root[i-1],root[i],1,cnt,A[i]);
    for(int i=1,l,r,k;i<=m;++i)
        l=read(),r=read(),k=read(),printf("%d\n",ref[Query(root[l-1],root[r],1,cnt,k)]);

    return 0;
}

原文地址:https://www.cnblogs.com/SovietPower/p/8443617.html

时间: 2024-10-07 00:15:38

洛谷.3834.[模板]可持久化线段树(主席树 静态区间第k小)的相关文章

[POJ2761]Feed the dogs(静态区间第k小,主席树)

题目链接:http://poj.org/problem?id=2761 题意:如题 主席树只能用模版,好菜. 1 /* 2 ━━━━━┒ギリギリ♂ eye! 3 ┓┏┓┏┓┃キリキリ♂ mind! 4 ┛┗┛┗┛┃\○/ 5 ┓┏┓┏┓┃ / 6 ┛┗┛┗┛┃ノ) 7 ┓┏┓┏┓┃ 8 ┛┗┛┗┛┃ 9 ┓┏┓┏┓┃ 10 ┛┗┛┗┛┃ 11 ┓┏┓┏┓┃ 12 ┛┗┛┗┛┃ 13 ┓┏┓┏┓┃ 14 ┃┃┃┃┃┃ 15 ┻┻┻┻┻┻ 16 */ 17 #include <algorithm>

主席树套树状数组 动态区间第k小

先打上代码以后更新解释 1 #include <cstdio> 2 #include <iostream> 3 #include <algorithm> 4 #include <cstring> 5 #include <cmath> 6 #define REP(i, s, n) for(int i = s; i <= n; i ++) 7 #define RAP(i, n, s) for(int i = n; i >= s; i --

洛谷P1531 I Hate It 线段树

洛谷P1531 I Hate It 线段树 单点修改 区间求最大 1 #include <cstdio> 2 #include <cmath> 3 #include <cstdlib> 4 #include <cstring> 5 #include <string> 6 #include <algorithm> 7 #include <iomanip> 8 #include <iostream> 9 using

权值线段树&amp;&amp;可持久化线段树&amp;&amp;主席树

权值线段树 顾名思义,就是以权值为下标建立的线段树. 现在让我们来考虑考虑上面那句话的产生的三个小问题: 1. 如果说权值作为下标了,那这颗线段树里存什么呢? ----- 这颗线段树中, 记录每个值出现的次数 2.权值很大怎么办?数组空间不够啊 ----- 可以先离散化,再记录 3.那权值线段树到底是用来干嘛的呢? ----- 可以快速求出第k小值(其实主要还是为了主席树做铺垫啦) 那第k小值该怎么求呢??? 从树根依次往下 若当前值K大于左儿子的值,则将K-=左儿子的值,然后访问右儿子 若当前

洛谷3919:可持久化数组——题解

https://www.luogu.org/problemnew/show/P3919 如题,你需要维护这样的一个长度为 N 的数组,支持如下几种操作 在某个历史版本上修改某一个位置上的值 访问某个历史版本上的某一位置的值 此外,每进行一次操作(对于操作2,即为生成一个完全一样的版本,不作任何改动),就会生成一个新的版本.版本编号即为当前操作的编号(从1开始编号,版本0表示初始状态数组) 这题题意看错了就很伤……操作2新建的版本是它所询问的历史版本emmm…… 以及各种小错误,int没retur

hdu 2665 可持久化线段树求区间第K大值(函数式线段树||主席树)

http://acm.hdu.edu.cn/showproblem.php?pid=2665 Problem Description Give you a sequence and ask you the kth big number of a inteval. Input The first line is the number of the test cases. For each test case, the first line contain two integer n and m (

【XSY2720】区间第k小 整体二分 可持久化线段树

题目描述 给你你个序列,每次求区间第\(k\)小的数. 本题中,如果一个数在询问区间中出现了超过\(w\)次,那么就把这个数视为\(n\). 强制在线. \(n\leq 100000,a_i<n,w\leq n\) 题解 考虑整体二分. 先看看离线要怎么做. 现在我们要计算每个数对每个区间的贡献. 对于每个询问区间和每种数,让这个区间最右边\(w\)个数对这个询问的贡献为\(1\),第\(w+1\)个数对这个询问的贡献为\(-w\). 这样每个数的贡献就是二维平面上的一个矩形.可以用扫描线+线段

可持久化线段树--主席树

浅谈可持久化线段树--主席树 权值线段树 权值线段树和普通线段树不一样的地方就是在于 它的结点存储的是区间内数的个数 这个线段树的好处就在于我们可以根据 左子树 和 右子树 的大小从而进行 查找某个数的排名 或者 查找排名为rk的数 可持久化的含义 可持久数据结构主要指的是我们可以查询历史版本的情况并支持插入,利用使用之前历史版本的数据结构来减少对空间的消耗(能够对历史进行修改的是函数式). 主席树的建树过程: 最开始的时候就是一个空树 然后我们再插入一个元素3 再加入一个元素 1 模版一 :求

小结:线段树 &amp; 主席树

概要: 就是用来维护区间信息,然后各种秀智商游戏. 应用: 优化dp.主席树等. 技巧及注意: size值的活用:主席树就是这样来的.支持区间加减,例题和模板:主席树,[BZOJ]1146: [CTSC2008]网络管理Network(树链剖分+线段树套平衡树+二分 / dfs序+树状数组+主席树),[BZOJ]1901: Zju2112 Dynamic Rankings(区间第k小+树状数组套可持久化线段树(主席树)) 01(就是更新和不更新等这种对立操作)情况:我们就要在各个更新的操作中明白