Java集合四LinkedList

LinkedList简介

  继承于AbstractSequentialList的双向链表,可以被当做堆栈、队列或双端队列进行操作。

  LinkedList本质上是一个双向链表,实现了Dequeue接口。

  LinkedList包含两个重要的成员:header和size。

  header是双向链表的表头,它是双向链表节点所对应的类Node的实例。Node中包含成员变量:prev、next、item。其中prev是该节点的上一个节点,next是该节点的下一个节点,item是该节点所包含的值。

    private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

  size是双向链表中节点的个数。

LinkedList构造函数

  //默认构造函数
  LinkedList() ;
  //创建一个LinkedList,包含Collection中的全部元素
  LinkedList(Collection<? extends E> c);

源码分析

package java.util;

import java.util.function.Consumer;
public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable
{
    //集合的大小
    transient int size = 0;
    //表头
    transient Node<E> first;
    //表尾
    transient Node<E> last;

    //构造函数
    public LinkedList() {
    }
    public LinkedList(Collection<? extends E> c) {
        this();
        addAll(c);
    }
    private void linkFirst(E e) {
        final Node<E> f = first;
        //创建新的节点,新节点的后继指向原来的头节点,即将原头节点向后移一位,新节点代替头结点的位置。
        final Node<E> newNode = new Node<>(null, e, f);
        //表头设定为新节点
        first = newNode;
        //如果往后移位的节点为空,则新表头节点就是最后一个节点
        //否则移位节点的上一节点是新节点
        if (f == null)
            last = newNode;
        else
            f.prev = newNode;
        //容量和代码改变计数增加
        size++;
        modCount++;
    }
    //在链表结尾添加元素,类似linkFirst(E e)
    void linkLast(E e) {
        final Node<E> l = last;
        final Node<E> newNode = new Node<>(l, e, null);
        last = newNode;
        if (l == null)
            first = newNode;
        else
            l.next = newNode;
        size++;
        modCount++;
    }

    //在非空节点succ之前插入节点e
    //即插入节点,要处理三个节点的信息,主要是next和prev的值的改变
    void linkBefore(E e, Node<E> succ) {
        //succ的上一个节点
        final Node<E> pred = succ.prev;
        //创建一个节点,将新节点的上一个节点设定为succ的上一节点,将新节点的下一节点设定为succ
        final Node<E> newNode = new Node<>(pred, e, succ);
        //设定succ的上一节点是新建的节点
        succ.prev = newNode;
        //如果新建节点的上一节点为null,则新建节点为表头节点
        if (pred == null)
            first = newNode;
        else
            //设定上一节点的下一节点是新建的节点
            pred.next = newNode;
        size++;
        modCount++;
    }

    //释放非空的首节点
    private E unlinkFirst(Node<E> f) {
        // assert f == first && f != null;
        final E element = f.item;
        final Node<E> next = f.next;
        f.item = null;
        f.next = null; // help GC
        first = next;
        if (next == null)
            last = null;
        else
            next.prev = null;
        size--;
        modCount++;
        return element;
    }
    //释放非空的尾节点
    private E unlinkLast(Node<E> l) {
        // assert l == last && l != null;
        final E element = l.item;
        final Node<E> prev = l.prev;
        l.item = null;
        l.prev = null; // help GC
        last = prev;
        if (prev == null)
            first = null;
        else
            prev.next = null;
        size--;
        modCount++;
        return element;
    }
    //释放非空节点x
    E unlink(Node<E> x) {
        // assert x != null;
        final E element = x.item;
        final Node<E> next = x.next;
        final Node<E> prev = x.prev;

        if (prev == null) {
            first = next;
        } else {
            prev.next = next;
            x.prev = null;
        }

        if (next == null) {
            last = prev;
        } else {
            next.prev = prev;
            x.next = null;
        }

        x.item = null;
        size--;
        modCount++;
        return element;
    }
    //获取首节点的元素
    public E getFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return f.item;
    }
    //获取尾节点的元素
    public E getLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return l.item;
    }
    //删除首节点
    public E removeFirst() {
        final Node<E> f = first;
        if (f == null)
            throw new NoSuchElementException();
        return unlinkFirst(f);
    }
    //删除尾节点
    public E removeLast() {
        final Node<E> l = last;
        if (l == null)
            throw new NoSuchElementException();
        return unlinkLast(l);
    }
    //添加元素到首节点
    public void addFirst(E e) {
        linkFirst(e);
    }
    //添加元素到尾节点
    public void addLast(E e) {
        linkLast(e);
    }
    //判断是否包含指定元素
    public boolean contains(Object o) {
        return indexOf(o) >= 0;
    }
    //集合大小
    public int size() {
        return size;
    }
    //添加元素,默认是添加到尾节点
    public boolean add(E e) {
        linkLast(e);
        return true;
    }
    //删除指定元素节点
    public boolean remove(Object o) {
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
            //遍历并判断,再调用unlink()方法删除指定元素
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }
    //添加Collection到集合中
    public boolean addAll(Collection<? extends E> c) {
        //这里是从链表尾节点开始插入的
        return addAll(size, c);
    }
    //从指定位置插入集合
    public boolean addAll(int index, Collection<? extends E> c) {
        checkPositionIndex(index);
        //将要插入的集合转换成数组
        Object[] a = c.toArray();
        int numNew = a.length;
        if (numNew == 0)
            return false;

        Node<E> pred, succ;
        if (index == size) {
            succ = null;
            pred = last;
        } else {
            succ = node(index);
            pred = succ.prev;
        }
        //遍历并将数组中的元素添加到链表中
        //注意:所有增加删除链表节点的操作都必须要对上一节点、本节点、下一节点进行修改
        for (Object o : a) {
            @SuppressWarnings("unchecked") E e = (E) o;
            Node<E> newNode = new Node<>(pred, e, null);
            if (pred == null)
                first = newNode;
            else
                pred.next = newNode;
            pred = newNode;
        }

        if (succ == null) {
            last = pred;
        } else {
            pred.next = succ;
            succ.prev = pred;
        }

        size += numNew;
        modCount++;
        return true;
    }
    //循环遍历并设定为null
    public void clear() {
        for (Node<E> x = first; x != null; ) {
            Node<E> next = x.next;
            x.item = null;
            x.next = null;
            x.prev = null;
            x = next;
        }
        first = last = null;
        size = 0;
        modCount++;
    }
    //获取指定位置节点的元素
    public E get(int index) {
        checkElementIndex(index);
        return node(index).item;
    }

    //设定指定节点的元素
    public E set(int index, E element) {
        checkElementIndex(index);
        Node<E> x = node(index);
        E oldVal = x.item;
        x.item = element;
        return oldVal;
    }

    //添加元素到指定节点
    public void add(int index, E element) {
        checkPositionIndex(index);

        if (index == size)
            linkLast(element);
        else
            linkBefore(element, node(index));
    }
    //删除指定节点
    public E remove(int index) {
        checkElementIndex(index);
        return unlink(node(index));
    }
    ////判断指定索引位置的元素是否存在
    private boolean isElementIndex(int index) {
        return index >= 0 && index < size;
    }
    //
    private boolean isPositionIndex(int index) {
        return index >= 0 && index <= size;
    }

    private String outOfBoundsMsg(int index) {
        return "Index: "+index+", Size: "+size;
    }

    private void checkElementIndex(int index) {
        if (!isElementIndex(index))
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    private void checkPositionIndex(int index) {
        if (!isPositionIndex(index))
            throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
    }

    ////返回指定索引位置的节点
    Node<E> node(int index) {

        //如果索引小于集合大小的一般,从表头节点开始查找
        if (index < (size >> 1)) {
            Node<E> x = first;
            for (int i = 0; i < index; i++)
                x = x.next;
            return x;
        } else {
            //否则从表尾节点开始查找
            Node<E> x = last;
            for (int i = size - 1; i > index; i--)
                x = x.prev;
            return x;
        }
    }
    //返回指定元素首次出现的节点位置
    public int indexOf(Object o) {
        int index = 0;
        if (o == null) {
            for (Node<E> x = first; x != null; x = x.next) {
                if (x.item == null)
                    return index;
                index++;
            }
        } else {
            for (Node<E> x = first; x != null; x = x.next) {
                if (o.equals(x.item))
                    return index;
                index++;
            }
        }
        return -1;
    }
    //返回指定元素最后一次出现的节点位置
    public int lastIndexOf(Object o) {
        int index = size;
        if (o == null) {
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (x.item == null)
                    return index;
            }
        } else {
            for (Node<E> x = last; x != null; x = x.prev) {
                index--;
                if (o.equals(x.item))
                    return index;
            }
        }
        return -1;
    }
    //获取但不移除此列表的头(第一个元素)。
    public E peek() {
        final Node<E> f = first;
        return (f == null) ? null : f.item;
    }
    //获取但不移除此列表的头(第一个元素)。
    public E element() {
        return getFirst();
    }
    // 获取并移除此列表的头(第一个元素)
    public E poll() {
        final Node<E> f = first;
        return (f == null) ? null : unlinkFirst(f);
    }
    //删除首节点
    public E remove() {
        return removeFirst();
    }
    //将指定元素添加到此列表的末尾(最后一个元素)
    //调用的是add()函数
    public boolean offer(E e) {
        return add(e);
    }
    //将指定元素添加到此列表的表头
    public boolean offerFirst(E e) {
        addFirst(e);
        return true;
    }
    //将指定元素添加到此列表的末尾
    public boolean offerLast(E e) {
        addLast(e);
        return true;
    }
    //获取但不移除此列表的头(第一个元素)。
    //和peek()函数代码一致
    public E peekFirst() {
        final Node<E> f = first;
        return (f == null) ? null : f.item;
     }
    //获取但不移除此列表的末尾
    public E peekLast() {
        final Node<E> l = last;
        return (l == null) ? null : l.item;
    }
    //获取并移除此列表的表头
    //和poll()函数代码一致
    public E pollFirst() {
        final Node<E> f = first;
        return (f == null) ? null : unlinkFirst(f);
    }
    //获取并移除此列表的末尾
    public E pollLast() {
        final Node<E> l = last;
        return (l == null) ? null : unlinkLast(l);
    }
    //添加元素到列表表头
    public void push(E e) {
        addFirst(e);
    }
    //删除并返回列表表头
    public E pop() {
        return removeFirst();
    }
    //删除指定元素第一次出现的节点
    public boolean removeFirstOccurrence(Object o) {
        return remove(o);
    }
    //返回指定元素最后一次出现的节点,这里是从列表末尾开始遍历的
    public boolean removeLastOccurrence(Object o) {
        if (o == null) {
            for (Node<E> x = last; x != null; x = x.prev) {
                if (x.item == null) {
                    unlink(x);
                    return true;
                }
            }
        } else {
            for (Node<E> x = last; x != null; x = x.prev) {
                if (o.equals(x.item)) {
                    unlink(x);
                    return true;
                }
            }
        }
        return false;
    }
    //遍历
    public ListIterator<E> listIterator(int index) {
        checkPositionIndex(index);
        return new ListItr(index);
    }

    private class ListItr implements ListIterator<E> {
        private Node<E> lastReturned;
        private Node<E> next;
        private int nextIndex;
        private int expectedModCount = modCount;

        ListItr(int index) {
            // assert isPositionIndex(index);
            next = (index == size) ? null : node(index);
            nextIndex = index;
        }

        public boolean hasNext() {
            return nextIndex < size;
        }

        public E next() {
            checkForComodification();
            if (!hasNext())
                throw new NoSuchElementException();

            lastReturned = next;
            next = next.next;
            nextIndex++;
            return lastReturned.item;
        }

        public boolean hasPrevious() {
            return nextIndex > 0;
        }

        public E previous() {
            checkForComodification();
            if (!hasPrevious())
                throw new NoSuchElementException();

            lastReturned = next = (next == null) ? last : next.prev;
            nextIndex--;
            return lastReturned.item;
        }

        public int nextIndex() {
            return nextIndex;
        }

        public int previousIndex() {
            return nextIndex - 1;
        }

        public void remove() {
            checkForComodification();
            if (lastReturned == null)
                throw new IllegalStateException();

            Node<E> lastNext = lastReturned.next;
            unlink(lastReturned);
            if (next == lastReturned)
                next = lastNext;
            else
                nextIndex--;
            lastReturned = null;
            expectedModCount++;
        }

        public void set(E e) {
            if (lastReturned == null)
                throw new IllegalStateException();
            checkForComodification();
            lastReturned.item = e;
        }

        public void add(E e) {
            checkForComodification();
            lastReturned = null;
            if (next == null)
                linkLast(e);
            else
                linkBefore(e, next);
            nextIndex++;
            expectedModCount++;
        }

        public void forEachRemaining(Consumer<? super E> action) {
            Objects.requireNonNull(action);
            while (modCount == expectedModCount && nextIndex < size) {
                action.accept(next.item);
                lastReturned = next;
                next = next.next;
                nextIndex++;
            }
            checkForComodification();
        }

        final void checkForComodification() {
            if (modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }
    }

    //链表的数据结构
    private static class Node<E> {
        E item;
        Node<E> next;
        Node<E> prev;

        Node(Node<E> prev, E element, Node<E> next) {
            this.item = element;
            this.next = next;
            this.prev = prev;
        }
    }

    /**
     * @since 1.6
     */
    public Iterator<E> descendingIterator() {
        return new DescendingIterator();
    }

    /**
     * Adapter to provide descending iterators via ListItr.previous
     */
    private class DescendingIterator implements Iterator<E> {
        private final ListItr itr = new ListItr(size());
        public boolean hasNext() {
            return itr.hasPrevious();
        }
        public E next() {
            return itr.previous();
        }
        public void remove() {
            itr.remove();
        }
    }

    @SuppressWarnings("unchecked")
    private LinkedList<E> superClone() {
        try {
            return (LinkedList<E>) super.clone();
        } catch (CloneNotSupportedException e) {
            throw new InternalError(e);
        }
    }
    //克隆
    public Object clone() {
        LinkedList<E> clone = superClone();

        // Put clone into "virgin" state
        clone.first = clone.last = null;
        clone.size = 0;
        clone.modCount = 0;

        // Initialize clone with our elements
        for (Node<E> x = first; x != null; x = x.next)
            clone.add(x.item);

        return clone;
    }
    //转换为数组
    public Object[] toArray() {
        Object[] result = new Object[size];
        int i = 0;
        for (Node<E> x = first; x != null; x = x.next)
            result[i++] = x.item;
        return result;
    }
    @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a) {
        if (a.length < size)
            a = (T[])java.lang.reflect.Array.newInstance(
                                a.getClass().getComponentType(), size);
        int i = 0;
        Object[] result = a;
        for (Node<E> x = first; x != null; x = x.next)
            result[i++] = x.item;

        if (a.length > size)
            a[size] = null;

        return a;
    }
    //序列化
    private static final long serialVersionUID = 876323262645176354L;
    private void writeObject(java.io.ObjectOutputStream s)
        throws java.io.IOException {
        // Write out any hidden serialization magic
        s.defaultWriteObject();

        // Write out size
        s.writeInt(size);

        // Write out all elements in the proper order.
        for (Node<E> x = first; x != null; x = x.next)
            s.writeObject(x.item);
    }

    /**
     * Reconstitutes this {@code LinkedList} instance from a stream
     * (that is, deserializes it).
     */
    @SuppressWarnings("unchecked")
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        // Read in any hidden serialization magic
        s.defaultReadObject();

        // Read in size
        int size = s.readInt();

        // Read in all elements in the proper order.
        for (int i = 0; i < size; i++)
            linkLast((E)s.readObject());
    }

    @Override
    public Spliterator<E> spliterator() {
        return new LLSpliterator<>(this, -1, 0);
    }

    /** A customized variant of Spliterators.IteratorSpliterator */
    static final class LLSpliterator<E> implements Spliterator<E> {
        static final int BATCH_UNIT = 1 << 10;  // batch array size increment
        static final int MAX_BATCH = 1 << 25;  // max batch array size;
        final LinkedList<E> list; // null OK unless traversed
        Node<E> current;      // current node; null until initialized
        int est;              // size estimate; -1 until first needed
        int expectedModCount; // initialized when est set
        int batch;            // batch size for splits

        LLSpliterator(LinkedList<E> list, int est, int expectedModCount) {
            this.list = list;
            this.est = est;
            this.expectedModCount = expectedModCount;
        }

        final int getEst() {
            int s; // force initialization
            final LinkedList<E> lst;
            if ((s = est) < 0) {
                if ((lst = list) == null)
                    s = est = 0;
                else {
                    expectedModCount = lst.modCount;
                    current = lst.first;
                    s = est = lst.size;
                }
            }
            return s;
        }

        public long estimateSize() { return (long) getEst(); }

        public Spliterator<E> trySplit() {
            Node<E> p;
            int s = getEst();
            if (s > 1 && (p = current) != null) {
                int n = batch + BATCH_UNIT;
                if (n > s)
                    n = s;
                if (n > MAX_BATCH)
                    n = MAX_BATCH;
                Object[] a = new Object[n];
                int j = 0;
                do { a[j++] = p.item; } while ((p = p.next) != null && j < n);
                current = p;
                batch = j;
                est = s - j;
                return Spliterators.spliterator(a, 0, j, Spliterator.ORDERED);
            }
            return null;
        }

        public void forEachRemaining(Consumer<? super E> action) {
            Node<E> p; int n;
            if (action == null) throw new NullPointerException();
            if ((n = getEst()) > 0 && (p = current) != null) {
                current = null;
                est = 0;
                do {
                    E e = p.item;
                    p = p.next;
                    action.accept(e);
                } while (p != null && --n > 0);
            }
            if (list.modCount != expectedModCount)
                throw new ConcurrentModificationException();
        }

        public boolean tryAdvance(Consumer<? super E> action) {
            Node<E> p;
            if (action == null) throw new NullPointerException();
            if (getEst() > 0 && (p = current) != null) {
                --est;
                E e = p.item;
                current = p.next;
                action.accept(e);
                if (list.modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                return true;
            }
            return false;
        }

        public int characteristics() {
            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
        }
    }

}

遍历方式

  1、迭代器Iterator

  2、快速随机访问get()方法

  3、增强for循环

  4、pollFirst()

  5、pollLast()

  6、removeFirst()

  7、removeLast()

  注:removeFirst()和removeLast()方法最快,因为一边读一边删。如果单纯读取。不删除原始数据,使用增强for循环。无论如何,不要使用随机访问,链表随机访问极其慢

原文地址:https://www.cnblogs.com/changzuidaerguai/p/8856011.html

时间: 2024-10-29 03:02:01

Java集合四LinkedList的相关文章

死磕 java集合之LinkedList源码分析

问题 (1)LinkedList只是一个List吗? (2)LinkedList还有其它什么特性吗? (3)LinkedList为啥经常拿出来跟ArrayList比较? (4)我为什么把LinkedList放在最后一章来讲? 简介 LinkedList是一个以双向链表实现的List,它除了作为List使用,还可以作为队列或者栈来使用,它是怎么实现的呢?让我们一起来学习吧. 继承体系 通过继承体系,我们可以看到LinkedList不仅实现了List接口,还实现了Queue和Deque接口,所以它既

java集合-LinkedList

LinkedList概念与简单实例 LinkedList类是双向列表,列表中的每个节点都包含了对前一个和后一个元素的引用. 1:LinkedList提供了4个不同位置的添加数据的方法,分别为链头插入,链尾插入,节点前插入,节点后插入 2:由于LinkedList是双向链表,在查询数据方面提供了"从前往后"和"从后往前"两个查询方法 3:如果数据量大,删除频繁,只能用LinkedList. 特别注意: list.get(i),LinkedList的底层是一个链表,随机

Java集合类库 LinkedList 源码解析

基于JDK 1.7,和ArrayList进行比较分析 Java已经有了ArrayList,用来存放元素,对元素的操作都很方便.为什么还会有LinkedList呢?我们都知道ArrayList获取元素很快,但是插入一个元素很慢,因为ArrayList底层维护的是一个数组,往数组中的某个位置插入一个元素,是很消耗资源的. 而LinkedList插入元素很快,获取任意位置的元素却很慢.这是为什么呢?底层又是怎样实现的呢? 1.继承关系 LinkedList的继承关系图: LinkedList继承的是A

Java 集合之LinkedList源码分析

1.介绍 链表是数据结构中一种很重要的数据结构,一个链表含有一个或者多个节点,每个节点处理保存自己的信息之外还需要保存上一个节点以及下一个节点的指针信息.通过链表的表头就可以访问整个链表的信息.Java API中提供了链表的Java实现---LinkedList下.LinkedList是通过节点的连接实现链表的数据结构,向linkedList中插入或删除元素的速度是特别快,而随机访问的速度相对较慢,这个是由于链表本身的性质造成的,在链表中,每个节点都包含了前一个节点的引用,后一个节点的引用和节点

【JAVA集合】LinkedList

以下内容基于jdk1.7.0_79源码: 什么是LinkedList List接口的链表实现,并提供了一些队列,栈,双端队列操作的方法: LinkedList补充说明 与ArrayList对比,LinkedList插入和删除操作更加高效,随机访问速度慢: 可以作为栈.队列.双端队列数据结构使用: 非同步,线程不安全: 与ArrayList.Vector一样,LinkedList的内部迭代器存在“快速失败行为”: 支持null元素.有顺序.元素可以重复: LinkedList继承的类以及实现的接口

从源码分析java集合【LinkedList】

LinkedList是一个双端链表,他继承了AbstractSequentaiList顺序列表,实现了List,Deque,Cloneable,和Serializable接口.Deque是双端队列的接口,LinkedList有记录头的 first 和 尾的 last,所以我们可以对队列的两端进行操作.它还实现了Cloneable和Serializeble接口,它们分别是实现队列进行拷贝和序列化的接口. LinkedList的节点的结构是: private static class Node<E>

java集合四种遍历方式

package conection; import java.util.Iterator;import java.util.LinkedList;import java.util.List; public class Ergodic { public static void main(String[] args) {     // TODO Auto-generated method stub    /*    * java集合类的四种遍历方式    *     */    List<Integ

java集合之LinkedList

LinkedList:位于java.util包下 1 LinkedList概述 特点:底层数据结构是链表,增删快查询慢:实现非同步,线程不安全,效率高:有序(存取顺序一致):允许存储重复值:允许存储null值:易于实现堆栈.队列.双向队列结构: 常用构造: public LinkedList(): 空参构造,构建一个空列表. 常用方法:和ArrayList差不多,此处仅列出特有的功能方法. 1)添加功能: public addFirst(E e) :将指定元素插入此列表的开头. public a

Java集合之LinkedList常见实例操作,实例说明

一.LinkedList常见操作 package List相关; /** * LinkedList 链接列表 * LinkedList:底层使用的链表数据结构.特点:增删速度快,查询速度稍慢: */ import java.util.Iterator; import java.util.LinkedList; class linkedlist_test { public static void main(String[] args){ LinkedList linkedlist = new Li