SysTick系统定时器(功能框图和优先级配置)

SysTick—系统定时器是属于 CM3 内核中的一个外设,内嵌在 NVIC 中。系统定时器是一个 24bit (2^24)的向下递减的计数器,计数器每计数一次的时间为 1/SYSCLK,一般我们设置系统时钟 SYSCLK 等于 72M。当重装载数值寄存器的值递减到 0 的时候,系统定时器就产生一次中断,以此循环往复。

因为 SysTick 是属于 CM3 内核的外设,所以所有基于 CM3 内核的单片机都具有这个系统定时器,使得软件在 CM3 单片机中可以很容易的移植。系统定时器一般用于操作系统,用于产生时基,维持操作系统的心跳.

SysTick的执行过程:counter在时钟的驱动下,从reload初值开始往下递减计数到0(在递减的过程中值可以在STK_VAL中查看到),产生中断和置位COUNTFLAG标志。然后又从reload 值开始重新递减计数,如此循环。

SysTick相关寄存器

SysTick—系统定时器有 4 个寄存器(CTRL LOAD VAL CALIB),简要介绍如下。在使用 SysTick 产生定时的时候,只需要配置前三个寄存器,最后一个校准寄存器不需要使用。

SysTick寄存器结构体

SysTick寄存器(在固件库文件:core_cm3.h中定义)

typedef struct{
   _IO uint32_t  CTRL;      /*控制及状态寄存器*/
  _IO uint32_t   LOAD;      /*重装载数值寄存器*/
  _IO uint32_t   VAL;       /*当前数值寄存器*/
 _IO uint32_t   CALIB;      /*校准寄存器*/

}

SysTick库函数

SysTick配置库函数(在固件库文件:core_cm3.h中定义)

__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
 {
 // 不可能的重装载值,超出范围
 if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk) {
 return (1UL);
 }

 // 设置重装载寄存器
 SysTick->LOAD = (uint32_t)(ticks - 1UL);

 // 设置中断优先级,默认优先级最低 __NVIC_PRIO_BITS 4(1111)系统定时器此时设置的优先级在内核外设中是最低的
 NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL);

 // 设置当前数值寄存器
 SysTick->VAL = 0UL;

 // 设置系统定时器的时钟源为 AHBCLK=72M
 // 使能系统定时器中断
 // 使能定时器
 SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
21 SysTick_CTRL_TICKINT_Msk |
22 SysTick_CTRL_ENABLE_Msk;
23 return (0UL);
24 }

固件库编程的时候我们只需要调用库函数 SysTick_Config()即可,形参 ticks 用来设置重装载寄存器的值,最大不能超过重装载寄存器的值 2^24,当重装载寄存器的值递减到 0 的时候产生中断,然后重装载寄存器的值又重新装载往下递减计数,以此循环往复。紧随其后设置好中断优先级最后配置系统定时器的时钟等于 AHBCLK=72M,使能定时器和定时器中断,这样系统定时器就配置好了,一个库函数搞定。

配置 SysTick 中断优先级

在 SysTick_Config()库函数还调用了固件库函数 NVIC_SetPriority()来配置系统定时器的中断优先级,该库函数也在 core_m3.h 中定义,原型如下

__STATIC_INLINE void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
 {
 if ((int32_t)IRQn < 0) {
 SCB->SHP[(((uint32_t)(int32_t)IRQn) & 0xFUL)-4UL] =(uint8_t)((priority << (8 - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL);
 } else {
 NVIC->IP[((uint32_t)(int32_t)IRQn)] =(uint8_t)((priority << (8 - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL);
 }
 }

函数首先先判断形参 IRQn 的大小,如果是小于 0,则表示这个是系统异常系统异常的优先级由内核外设 SCB 的寄存器 SHPRx 控制,如果大于 0 则是外部中断,外部中断的优先级由内核外设 NVIC 中的 IPx 寄存器控制。

因为 SysTick 属于内核外设,跟普通外设的中断优先级有些区别,并没有抢占优先级和子优先级的说法。在 STM32F103 中,内核外设的中断优先级由内核 SCB 这个外设的寄存器:SHPRx(x=1.2.3)来配置。

SPRH1-SPRH3 是一个 32 位的寄存器,但是只能通过字节访问,每 8 个字段控制着一个内核外设的中断优先级的配置。在 STM32F103 中,只有位 7:3 这高四位有效,低四位没有用到,所以内核外设的中断优先级可编程为:0~15,只有 16 个可编程优先级,数值越小,优先级越高。如果软件优先级配置相同,那就根据他们在中断向量表里面的位置编号来决定优先级大小,编号越小,优先级越高。 (系统定时器此时设置的优先级在内核外设中是最低的.)

外设中断优先级和内核外设优先级比较

内核优先级是不分抢占优先级和子优先级,但不是内核外设的优先级就一定比外设的优先级高.

判别方法:根据内核外设设置优先级0-15的值,把内核外设的中断优先级的四个位按照外设的中断优先级来分组来解析即可,即人为的分出抢占优先级和子优先级。

比如配置一个外设的中断优先级分组为 2,抢占优先级为 1,子优先级也为 1,systick 的优先级为固件库默认配置的 15。当我们比较内核外设和片上外设的中断优先级的时候,我们只需要抓住 NVIC 的中断优先级分组不仅对片上外设有效,同样对内核的外设也有效。我们把 systick 的优先级 15 转换成二进制值就是 1111(0b),又因为 NVIC 的优先级分组 2,那么前两位的 11(0b)就是 3,后两位的 11(0b)也是 3。无论从抢占还是子优先级都比我们设定的外设的优先级低。如果当两个的软件优先级都配置成一样,那么就比较他们在中断向量表中的硬件编号,编号越小,优先级越高。

SysTick 初始化函数

void SysTick_Init(void)
{
 /* SystemFrequency / 1000 1ms 中断一次
 * SystemFrequency / 100000 10us 中断一次
 * SystemFrequency / 1000000 1us 中断一次
 */
 if (SysTick_Config(SystemCoreClock / 100000)) {
 /* Capture error */
  while (1);
   }
}

SysTick 初始化函数由用户编写,里面调用了 SysTick_Config()这个固件库函数,通过设置该固件库函数的形参,就决定了系统定时器经过多少时间就产生一次中断

SysTick定时时间计算

时间单位换算: 1s = 1000ms = 1000 000 us = 1000 000 000ns

t = reload * ( 1/clk )

  1. Clk = 72M时,t = (72) *(1/ 72 M )= 1US
  2. Clk = 72M时,t = (72000) *(1/ 72 M )= 1MS

原文地址:https://www.cnblogs.com/wenshinlee/p/8967497.html

时间: 2024-10-27 19:44:07

SysTick系统定时器(功能框图和优先级配置)的相关文章

SysTick—系统定时器

本章参考资料<ARM Cortex?-M4F 技术参考手册> -4.5 章节 SysTick Timer(STK), 和4.48 章节 SHPRx,其中 STK 这个章节有 SysTick 的简介和寄存器的详细描述.因为SysTick 是属于 CM4 内核的外设,有关寄存器的定义和部分库函数都在 core_cm4.h 这个头文件中实现.所以学习 SysTick 的时候可以参考这两个资料,一个是文档,一个是源码. SysTick 简介SysTick-系统定时器是属于 CM4 内核中的一个外设,内

第18章 SysTick—系统定时器

本章参考资料<Cortex?-M7内核编程手册>-4.4 章节SysTick Timer(STK),和4.38章节SHPRx,其中STK这个章节有SysTick的简介和寄存器的详细描述.因为SysTick是属于CM7内核的外设,有关寄存器的定义和部分库函数都在core_cm7.h这个头文件中实现.所以学习SysTick的时候可以参考这两个资料,一个是文档,一个是源码. 18.1  SysTick简介 SysTick-系统定时器是属于CM7内核中的一个外设,内嵌在NVIC中.系统定时器是一个24

STM32之SysTick(系统定时器)

SysTick定时器是被捆绑在NVIC中的,用于产生SysTick异常(异常号是15).(同样,玩过51单片机的都知道定时器的作用了) 在STM32在内核部分是包含了一个简单的定时器–SysTick timer.因为在所有的Cortex-M3芯片上都有这个定时器,所以软件在不同芯片生产厂商的Cortex-M3器件间的一只工作就得以化简. 该定时器的时钟源可以是内部时钟( FCLK, CM3 上的自由运行时钟),或者是外部时钟(CM3 处理器上的 STCLK 信号).不过, STCLK 的具体来源

STM32F103ZET6系统定时器SysTick

1.系统定时器SysTick的简介 系统定时器SysTick属于内核外设,内嵌在NVIC中.SysTick是一个24位的向下递减的计数器,计数器根据SysTick的时钟源计数,当SysTick的计数器计数到0的时候,SysTick就产生一次中断,并且SysTick的重装载寄存器会给计数器重新赋值,以此循环往复. SysTick一般用于带操作系统的应用,用来产生时基,维持操作系统的心跳. 2.SysTick的寄存器 SysTick有4个寄存器: 控制及状态寄存器CTRL: 重装载数值寄存器LOAD

使用系统定时器SysTick实现精确延时微秒和毫秒函数

SysTick定时器简介 SysTick定时器是存在于系统内核的一个滴答定时器,只要是ARM Cortex-M0/M3/M4/M7内核的MCU都包含这个定时器,它是一个24位的递减定时器,当计数到 0 时,将从RELOAD 寄存器中自动重装载定时初值,开始新一轮计数.使用内核的SysTick定时器来实现延时,可以不占用系统定时器,由于和MCU外设无关,所以代码的移植,在不同厂家的Cortex-M内核MCU之间,可以很方便的实现.而东芝的这款TT_M3HQ开发板使用的TMPM3HQFDFG芯片,正

6.SysTick系统时钟滴答实验(stm32中断入门)

系统时钟滴答实验很不难,我就在面简单说下,但其中涉及到了STM32最复杂也是以后用途最广的外设-NVIC,如果说RCC是实时性所必须考虑的部分,那么NVIC就是stm32功能性实现的基础,NVIC的难度并不高,但是理解起来还是比较复杂的,我会在本文中从实际应用出发去说明,当然最好去仔细研读宋岩翻译的<Cortex-M3权威指南>第八章,注意这不是一本教你如何编写STM32代码的工具书,而是阐述Cortex-M3内核原理的参考书,十分值得阅读. SysTick系统时钟的核心有两个,外设初始化和S

系统定时器(滴答定时器)

  ARM Cortex-M3内核中有一个Systick定时器,它是一个24位(0~(2^24-1))的倒计数定时器,当计数到0时,它就会从Load寄存器中自动重装定时初值,只要不把CTRL寄存器中的ENABLE清0,它就永不停.   时钟源可以是内部时钟FCLK或外部时钟STCLK        配置系统定时器步骤:      ①选择时钟源       ②设定重载数(reload)       ③开启中断       ④启动滴答定时器 在core_cm3.h中有关于系统定时器的配置:    

利用系统定时器产生延时的方法

/********************************************************************************** * 文件名 :SysTick.c * 描述 :SysTick 系统滴答时钟10us中断函数库,中断时间可自由配置, * 常用的有 1us 10us 1ms 中断. * 库版本 :ST3.5.0 *********************************************************************

Win10专业版系统睡眠功能消失或不可用怎么办?

部分从Win7/Win8.1升级到Win10的用户可能遇到了升级后系统睡眠功能"消失"的问题,无论是在控制面板还是Modern设置页面中都找不到睡眠功能.导致这一问题的原因可能是组策略配置出现问题,此时可参考下面的方法解决. 注意,由于Windows10家庭版系统不包含组策略功能,因此本方法只适用于Win10专业版/企业版. 首先在Cortana搜索框中搜索"组策略",回车即可打开"真钱麻将": 展开"计算机配置"-"