斯坦福-随机图模型-week1.5_



title: 斯坦福-随机图模型-week1.5

tags: note

notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation

---

斯坦福-随机图模型-week1.5

贝叶斯网络

朴素贝叶斯

朴素贝叶斯是一个概率的分类模型,下面我们用概率图的思想去理解他。他转化成概率图模型可以描述成如下:

第一层是一个分类的随机变量,描述事物的分类:

第二层是多个特征的随机变量,也就是说这是一个从分类到特征的概率图模型,我们有在分类在观测的情况下,各个特征是相互条件独立的。

描述c与其他的特征同时发生的概率可以用如下公式:

更具体的可以将上述的式子进行展开,衡量每一个类别和各个特征的联合概率。

描述为

举例

下面举一个例子,比如一个文本分类的模型:

其中文本的类别是第一行,文本的特征,也就是文本出现的内容是第二行。这样就可以用我们的模型进行有效的分分类了。

原文地址:https://www.cnblogs.com/zangzelin/p/8502895.html

时间: 2024-10-14 16:59:50

斯坦福-随机图模型-week1.5_的相关文章

斯坦福-随机图模型-week1.1_

title: 斯坦福-随机图模型-week1.1 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week1.1 练习 1.第 1 个问题 Factor product. Let X,Y and Z be binary variables. If ?1(X,Y) and ?2(Y,Z) are the factors shown below, compute

斯坦福-随机图模型-week1.5

title: 斯坦福-随机图模型-week1.5 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week1.5 贝叶斯网络 朴素贝叶斯 朴素贝叶斯是一个概率的分类模型,下面我们用概率图的思想去理解他.他转化成概率图模型可以描述成如下: 原文地址:https://www.cnblogs.com/zangzelin/p/8502825.html

斯坦福-随机图模型-week1.4_

title: 斯坦福-随机图模型-week1.4 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week1.4 独立性 preliminaries 初步 独立的数学描述 对于事建 a, b 如果是独立的那么使用如下的符号进行描述 独立的事件有以下的性质: 对于随机变量有相似的表示 一个例子 还是用之前的成绩问题作为例子: 我们可以看到P(I,D)的矩阵中,

斯坦福-随机图模型-week1.0_

title: 斯坦福-随机图模型-week2.0 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week2.0 模板模型(Template Models) 在实际的模型的建立的过程中,会出现很多的重复的情况.比如在如下的模型中: 有很多的重复的结构,比如每一个的基因型都和表现形直接相关.而且每一个基因型都和两个前代的基因型十分的相关. 或者在自然语言处理的

斯坦福-随机图模型-week2.1_

title: 斯坦福-随机图模型-week2.1 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week2.1 plate model 模板模型 4. Plate 模型 时序模板模型,通常还有一类情况需要模板模型:问题中有多个相同类型的不同对象,希望建立模板对这些对象进行统一考虑. 4.1 硬币采样例子 如何理解 Plate 模型的机制,以最简单的硬币采样

斯坦福-随机图模型-week2.2_

title: 斯坦福-随机图模型-week2.2 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week2.2 习题 1.第 1 个问题 Markov Assumption. If a dynamic system X satisfies the Markov assumption for all time t≥0, which of the follow

斯坦福-随机图模型-week3.0_

title: 斯坦福-随机图模型-week3.0 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.0 马尔科夫网络 pairwise markov networks 成对马尔科夫模型 图论模型中有有向图和无向图,对于无向图来说,运用到随机图论中就是马尔科夫模型. 在马尔科夫模型中,有一种模型十分有趣,他是成对马尔科夫模型. 我们首先看一个例子:

斯坦福-随机图模型-week3.3_

title: 斯坦福-随机图模型-week3.3 tags: note notebook: 6- 英文课程-9-Probabilistic Graphical Models 1: Representation --- 斯坦福-随机图模型-week3.3 习题 1. Question 1 I-Maps. Graph G (shown below) is a perfect I-map for distribution P, i.e. I(G)=I(P). Which of the other gr

python图工具中基于随机块模型动态网络社团检测

原文链接:http://tecdat.cn/?p=7602 这是“政治博客圈和2004年美国大选”中的政治博客网络图,但是边缘束是使用随机块模型确定的(注:下图与图相同(即,布局和数据相同)). Tiago论文中的5-我只是在上面放了一个黑色背景 . 边缘配色方案与Adamic和Glance的原始论文中的相同,即每个节点对应一个博客URL,颜色反映政治取向,红色代表保守派,蓝色代表自由派.橙色边从自由派博客到保守派博客,紫色边从保守派到自由派(参见Adamic和Glance中的图1). 颜色方案