数字特征:方差

【引入】

有一批灯泡,知其平均寿命是 $E(X)=1000$ (小时)。仅由这一指标我们还不能判定这批灯泡的质量好坏。

事实上,有可能其中绝大部分灯泡的寿命都在950~1050小时;

也有可能其中约有一半是高质量的,它们的寿命大约有1300小时,另一半却是质量很差的,其寿命大约只有700小时,

为要评定这批灯泡质量的好坏,还需进一步考察灯泡的寿命 $X$ 与其平均值 $E(X)=1000$ 的偏离程度。

若偏离程度较小,表示质量比较稳定。从这个意义上来说,我们认为质量较好。

前面也曾提到在检验棉花的质量时,既要注意纤维的平均长度,还要注意纤维长度与平均长度的偏离程度。

由此可见,研究随机变量与其构成的偏离程度是必要的。

那么,用怎样的量去度量这个偏离程度呢?

容易看到 $E\{ |X-E(X)|\}$ 能度量随机变量与其均值 $E(X)$ 的偏离程度,

但由于上式带有绝对值,运算不方便,为运算方便起见,通常用量 $E\{ [X-E(X)]^2\}$ 来度量随机变量X与其均值 $E(X)$ 的偏离程度。

【定义】

设 $X$ 是一个随机变量,若 $E\{ [X-E(X)]^2\}$ 存在,则称 $E\{ [X-E(X)]^2\}$ 为 $X$ 的方差,记为 $D(X)$ 或 $Var(X)$,

$$D(X)=Var(X)=E\{ [X-E(X)]^2\}\tag{2.1}$$

在应用上还引入量 $\sqrt{D(X)}$ ,记为 $\sigma (X)$ ,称为标准差或均方差。

按定义,随机变量 $X$ 的方差表达了 $X$ 的取值与其数学期望的偏离程度。

若 $D(X)$ 较小意味着 $X$ 的取值比较集中在 $E(X)$ 的附近,反之,若 $D(X)$ 较大则表示 $X$ 的取值较分散。

因此, $D(X)$ 是刻画 $X$  取值分散程度的一个量,它是衡量 $X$ 取值分散程度的一个尺度。

由定义知,方差实际上就是随机变量 $X$ 的函数 $g(X)=(X-E(X))^2$ 的数学期望。

于是对于离散型随机变量,按(1.3)式有

$$D(X)=\sum_{k=1}^{\infty}[x_k-E(X)]^2p_k\tag{2.2}$$

其中,$P\{ X=x_k\}=p_k,k=1,2,…$ 是 $X$ 的分布律

对于连续型随机变量,按(1.4)式有

$$D(X)=\int_{-\infty}^{\infty}[x-E(X)]^2f(x)dx\tag{2.3}$$

其中 $f(x)$ 是 $X$ 的概率密度

随机变量 $X$ 的方差可按下列公式计算

$$D(X)=E(X^2)-[E(X)]^2\tag{2.4}$$

证:

【例1】标准化变量

【例2】(离散)(0-1)分布

【例3】(离散)泊松分布

【例4】(连续)均匀分布

【例5】(连续)指数分布



方差的性质

1.设 $C$ 是常数,则 $D(C)=0$

证:

2.设 $X$ 是随机变量,$C$ 是常数,则有 $D(CX)=C^2D(X),\qquad D(X+C)=D(X)$

证:

3.设 $X,Y$ 是两个随机变量,则有 $D(X+Y)=D(X)+D(Y)+2E\{ (X-E(X)(Y-E(Y)))\}$

特别,若 $X,Y$ 相互独立,则有 $D(X+Y)=D(X)+D(Y)$

这一性质可以推广到任意有限多个相互独立的随机变量之和的情况。

证:

4. $D(X)=0$ 的充要条件是 $X$ 以概率1取常数 $E(X)$ ,即 $P\{ X=E(X)\} =1$

证:

【例6】(离散)二项分布

【例7】(连续)正态分布

【例8】

【定理】切比雪夫不等式

证:

原文地址:https://www.cnblogs.com/ForTech/p/8605247.html

时间: 2024-11-03 06:40:01

数字特征:方差的相关文章

R语言结合概率统计的体系分析---数字特征

现在有一个人,如何对这个人怎么识别这个人?那么就对其存在的特征进行提取,比如,提取其身高,其相貌,其年龄,分析这些特征,从而确定了,这个人就是这个人,我们绝不会认错. 同理,对数据进行分析,也是提取出数据的特征,对其特征进行分析,从而确定这些数据所呈现的信息状况,从而确定了这些数据的独特性和唯一性,因为他呈现的信息是唯一的,绝不与别的是相同的. 那么这些特征是什么呢?拥有哪些特征呢?似乎应该是经过无数科学家的总结,终于发现了几个重要的特征,包括数字特征和分布特征,这个数字特征,包括集中位置,分散

伯努利分布详解(包含该分布数字特征的详细推导步骤)

Bernouli Distribution(中文翻译称伯努利分布) 该分布研究的是一种特殊的实验,这种实验只有两个结果要么成功要么失败,且每次实验是独立的并每次实验都有固定的成功概率p. 概率公式可以表示为  , x只能为0或者1,即要么成功要么失败 根据数学期望的性质 由于这里x只有两个取值所以该分布的数学期望为 方差则可以由方差公式来计算 方差公式:  该分布显然, 因此可以得到, 所以方差  最后我们来推导该分布的最大似然估计 是这样定义的,假设我们做了N次实验,得到的结果集合为 ,我们想

常用统计数字特征及解析工具

母函数 母函数定义 考虑只取非负值的离散型随机分布,如二项分布,泊松分布,几何分布等,称之为整值随机变量.而有一种变换方法比较适于变换,即母函数法. 对于整值随机变量 \(\xi\) ,根据佚名统计学家公式,定义母函数为 \(P(s)=Es^{\xi}=\sum_{k=0}^\infty p_ks^k\) ,当 \(|s|\le1\)时,\(P(s)\) 一致收敛且绝对收敛,所以母函数对任何整值随机变量都存在. 二项分布母函数: \(P(s)=(q+ps)^n\) 泊松分布母函数: \(P(s)

数字特征:协方差 & 相关系数

[引入] 对于二维随机变量 $(X,Y)$ ,我们除了讨论 $X$ 与 $Y$ 的数学期望和方差除外, 还需要讨论描述 $X$ 与 $Y$ 之间相互关系的数字特征. 在<数字特征:方差>方差性质3的证明中,我们已经看到, 如果两个随机变量 $X$ 与 $Y$ 是相互独立的,则 $E\{ [X-E(X)][Y-E(Y)]\} =0$ 这意味着当 $E\{ [X-E(X)][Y-E(Y)]\} \neq 0$ 时, $X$ 与 $Y$ 不相互独立,而是存在一定的关系的. [定义] 量 $E\{ [

噪声信号的波形和数字特征和频谱图

噪声信号的波形和数字特征 频谱图: 原文地址:https://www.cnblogs.com/nowroot/p/12425074.html

c语言程序设计第3周编程作业(数字特征)

题目内容: 对数字求特征值是常用的编码算法,奇偶特征是一种简单的特征值.对于一个整数,从个位开始对每一位数字编号,个位是1号,十位是2号,以此类推.这个整数在第n位上的数字记作x,如果x和n的奇偶性相同,则记下一个1,否则记下一个0.按照整数的顺序把对应位的表示奇偶性的0和1都记录下来,就形成了一个二进制数字.比如,对于342315,这个二进制数字就是001101. 这里的计算可以用下面的表格来表示: 数字 3 4 2 3 1 5 数位 6 5 4 3 2 1 数字奇偶 奇 偶 偶 奇 奇 奇

图像特征提取:图像的矩特征

1. 矩的概念 图像识别的一个核心问题是图像的特征提取,简单描述即为用一组简单的数据(图像描述量)来描述整个图像,这组数据越简单越有代表性越好.良好的特征不受光线.噪点.几何形变的干扰.图像识别发展几十年,不断有新的特征提出,而图像不变矩就是其中一个. 矩是概率与统计中的一个概念,是随机变量的一种数字特征.设X为随机变量,c为常数,k为正整数.则量E[(x−c)k]称为X关于c点的k阶矩. 比较重要的有两种情况: 1. c=0.这时ak=E(Xk)称为X的k阶原点矩 2. c=E(X).这时μk

机器学习之(四)特征工程以及特征选择的工程方法

关于特征工程(Feature Engineering),已经是很古老很常见的话题了,坊间常说:"数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已".由此可见,特征工程在机器学习中占有相当重要的地位.在实际应用当中,可以说特征工程是机器学习成功的关键.纵观Kaggle.KDD等国内外大大小小的比赛,每个竞赛的冠军其实并没有用到很高深的算法,大多数都是在特征工程这个环节做出了出色的工作,然后使用一些常见的算法,比如LR,就能得到出色的性能.遗憾的是,在很多的书籍中并没有直接

数学期望、方差、标准差、协方差

数学期望数学期望E(x)完全由随机变量X的概率分布所确定,若X服从某一分布,也称E(x)是这一分布的数学期望.数学期望的定义是实验中每次可能的结果的概率乘以其结果的总和.离散型随机量的数学期望定义:离散型随机变量的所有可能取值?xixi?与其对应的概率?P(xi)?乘积的和为该离散型随机量的数学期望,记为?E(X).公式:E(X)=∑i=1nxiPi连续型随机量的数学期望定义:假设连续型随机变量?XX的概率密度函数为?f(x),如果积分∫+∞?∞xf(x)dx绝对收敛,则称这个积分的值为连续型随