题目描述
We are given a sequence of n decimal digits. The sequence needs to be partitioned into one or more contiguous subsequences such that each subsequence, when interpreted as a decimal number, is divisible by a given integer m.
Find the number of different such partitions modulo 10^9 +7. When determining if two partitions are different, we only consider the locations of subsequence boundaries rather than the digits themselves, e.g. partitions 2|22 and 22|2 are considered different.
输入输出格式
输入格式:
The ?rst line contains two integers n and m (1≤n≤300000, 1≤m≤1000000) – the length of the sequence and the divisor respectively. The second line contains a string consisting of exactly n digits.
输出格式:
Output a single integer – the number of different partitions modulo 109 +7.
输入输出样例
输入样例#1:
4 2 1246
输出样例#1:
4
输入样例#2:
4 7 2015
输出样例#2:
0
说明
Central Europe Regional Contest 2015 Problem D
我们发现分出来的每段的末尾i 的前缀数字 s[i] 都必须是 m的倍数, 否则中间肯定有一段%m!=0(想一想为什么),然后这就是个SB题了233
#include<bits/stdc++.h> #define ll long long using namespace std; const int ha=1000000007; int n,m,T,num; char ch; inline int add(int x,int y){ x+=y; return x>=ha?x-ha:x; } inline int C(int y){ int an=1,x=2; for(;y;y>>=1,x=x*(ll)x%ha) if(y&1) an=an*(ll)x%ha; return an; } int main(){ scanf("%d%d",&n,&m); const int M=m; for(int i=1;i<=n;i++){ ch=getchar(); while(!isdigit(ch)) ch=getchar(); num=((num*10)+ch-‘0‘)%M; if(!num) T++; } if(num) puts("0"); else printf("%d\n",C(T-1)); return 0; }
原文地址:https://www.cnblogs.com/JYYHH/p/8678330.html