迷人的算法-排列组合

需求



最近工作中碰到一个需求:我们的数据表有多个维度,任意多个维度组合后进行 group by 可能会产生一些”奇妙”的反应,由于不确定怎么组合,就需要将所有的组合都列出来进行尝试。

抽象一下就是从一个集合中取出任意元素,形成唯一的组合。如 [a,b,c] 可组合为 [a]、[b]、[c]、[ab]、[bc]、[ac]、[abc]

要求如下:

  • 组合内的元素数大于 0 小于等于 数组大小;
  • 组合内不能有重复元素,如 [aab] 是不符合要求的组合;
  • 组合内元素的位置随意,即 [ab] 和 [ba] 视为同一种组合;

看到这里,就应该想到高中所学习的排列组合了,同样是从集合中取出元素形成一个另一个集合,如果集合内元素位置随意,就是组合,从 b 个元素中取 a 个元素的组合有 种。而如果要求元素顺序不同也视为不同集合的话,就是排列,从 m 个元素取 n 个元素的排列有 种。

我遇到的这个需求就是典型的组合,用公式来表示就是从元素个数为 n 的集合中列出 种组合。

转载随意,文章会持续修订,请注明来源地址:https://zhenbianshu.github.io 。

文中算法用 Java 实现。

从排列到组合-穷举



对于这种需求,首先想到的当然是穷举。由于排列的要求较少,实现更简单一些,如果我先找出所有排列,再剔除由于位置不同而重复的元素,即可实现需求。假设需要从 [A B C D E] 五个元素中取出所有组合,那么我们先找出所有元素的全排列,然后再将类似 [A B] 和 [B A] 两种集合去重即可。

我们又知道 ,那么我们先考虑一种情况 ,假设是 ,从 5 个元素中选出三个进行全排列。

被选取的三个元素,每一个都可以是 ABCDE 之一,然后再排除掉形成的集合中有重复元素的,就是 5 选 3 的全排列了。

代码是这样:

    private static Set<Set<String>> exhaustion() {
        List<String> m = Arrays.asList("a", "b", "c", "d", "e");
        Set<Set<String>> result = new HashSet<>();
        int count = 3;
        for (int a = 1; a < m.size(); a++) {
            for (int b = 0; b < m.size(); b++) {
                for (int c = 0; c < m.size(); c++) {
                    Set<String> tempCollection = new HashSet<>();
                    tempCollection.add(m.get(a));
                    tempCollection.add(m.get(b));
                    tempCollection.add(m.get(c));
                    // 如果三个元素中有重复的会被 Set 排重,导致 Set 的大小不为 3
                    if (tempCollection.size() == count) {
                        result.add(tempCollection);
                    }
                }
            }
        }

        return result;
    }

对于结果组合的排重,我借用了 Java 中 HashSet 的两个特性:

  • 元素唯一性,选取三个元素放到 Set 内,重复的会被过滤掉,那么就可以通过集合的大小来判断是否有重复元素了,
  • 元素无序性,Set[A B] 和 Set[B A] 都会被表示成 Set[A B]。
  • 另外又由于元素唯一性,被同时表示为 Set[A B] 的多个集合只会保留一个,这样就可以帮助将全排列转为组合。

可以注意得到,上面程序中 count 参数是写死的,如果需要取出 4 个元素的话就需要四层循环嵌套了,如果取的元素个取是可变的话,普通的编码方式就不适合了。

注: 可变层数的循环可以用 递归 来实现。

从排列到组合-分治



穷举毕竟太过暴力,我们来通过分治思想来重新考虑一下这个问题:

分治思想

分治的思想总的来说就是”大事化小,小事化了”,它将复杂的问题往简单划分,直到划分为可直接解决的问题,再从这个直接可以解决的问题向上聚合,最后解决问题。

从 M 个元素中取出 N 个元素整个问题很复杂,用分治思想就可以理解为:

  • 首先,如果我们已经从 M 中元素取出了一个元素,那么集合中还剩下 M-1 个,需要取的元素就剩下 N-1 个。
  • 还不好解决的话,我们假设又从 M-1 中取出了一个元素,集合中还剩下 M-2 个,需要取的元素只剩下 N-2 个。
  • 直到我们可能取了有 M-N+1 次,需要取的元素只剩下一个了,再从剩余集合中取,就是一个简单问题了,很简单,取法有 M-N+1 种。
  • 如果我们解决了这个问题,已经取完最后一次了产生了 M-N+1 种临时集合,再考虑从 M-N+2 个元素中取一个元素呢,又有 M-N+2 种可能。
  • 将这些可能聚合到一块,直到取到了 N 个元素,这个问题也就解决了。

还是从 5 个元素中取 3 个元素的示例:

  • 从 5 个元素中取 3 个元素是一个复杂问题,为了简化它,我们认为已经取出了一个元素,还要再从剩余的 4 个元素中取出 2 个,求解公式为:。
  • 从 4 个元素中取出 2 个依旧不易解决,那我们再假设又取出了一个元素,接下来的问题是如何从 3 个元素中取一个,公式为 。
  • 从 3 个元素中取 1 个已经是个简单问题了,有三种可能,再向上追溯,与四取一、五取一的可能性做乘,从而解决这个问题。

代码实现

用代码实现如下:

public class Combination {

    public static void main(String[] args) {
        List<String> m = Arrays.asList("a", "b", "c", "d", "e");
        int n = 5;

        Set<Set<String>> combinationAll = new HashSet<>();
        // 先将问题分解成 五取一、五取二... 等的全排列
        for (int c = 1; c <= n; c++) {
            combinationAll.addAll(combination(m, new ArrayList<>(), c));
        }

        System.out.println(combinationAll);
    }

    private static Set<Set<String>> combination(List<String> remainEle, List<String> tempCollection, int fetchCount) {
        if (fetchCount == 1) {
            Set<Set<String>> eligibleCollections = new HashSet<>();
            // 在只差一个元素的情况下,遍历剩余元素为每个临时集合生成多个满足条件的集合
            for (String ele : remainEle) {
                Set<String> collection = new HashSet<>(tempCollection);
                collection.add(ele);
                eligibleCollections.add(collection);
            }
            return eligibleCollections;
        }

        fetchCount--;
        Set<Set<String>> result = new HashSet<>();
        // 差多个元素时,从剩余元素中取出一个,产生多个临时集合,还需要取 count-- 个元素。
        for (int i = 0; i < remainEle.size(); i++) {
            List<String> collection = new ArrayList<>(tempCollection);
            List<String> tempRemain = new ArrayList<>(remainEle);
            collection.add(tempRemain.remove(i));
            result.addAll(combination(tempRemain, collection, fetchCount));
        }
        return result;
    }
}

其实现就是递归,关于递归和分治,有兴趣可以看一下隐藏篇: 递归和分治

直击本质-位运算



从元素的全排列找全组合,比穷举略好,但还不是最好的方法,毕竟它”绕了一次道”。

很多算法都能通过位运算巧秒地解决,其优势主要有两点:一者位运算在计算机中执行效率超高,再者由于位运算语义简单,算法大多直指本质。

组合算法也能通过位运算实现。

思想

再次考虑全组合的需求,从 M 个元素中取任意个元素形成组合,组合内元素不能重复、元素位置无关。

之前的方法都是从结果组合是否满足要求来考虑问题,考虑组合是否有重复元素、是否已有同样的组合等条件。如果换种思路,从待选元素上来考虑呢?

对于每个元素来说,它的状态就简单得多了,要么被放进组合,要么不放进组合。每个元素都有这么两种状态。如果从 5 个元素中任意取 N 个元素形成组合的话,用二进制位来表示每个元素是否被放到组合里,就是:

A  B  C  D  E
0  0  0  0  1   [E] = 1

A  B  C  D  E
0  0  0  1  0   [D] = 2

A  B  C  D  E
0  0  0  1  1   [DE] = 3
...

看到这里,应该就非常清楚了吧,每种组合都可以拆解为 N 个二进制位的表达形式,而每个二进制组合同时代表着一个十进制数字,所以每个十进制数字都就能代表着一种组合。

十进制数字的数目我们很简单就能算出来,从00000... 到 11111... 一共有 种,排除掉全都不被放进组合这种可能,结果有种。

代码实现

下面是 Java 代码的实现:

public class Combination {

    public static void main(String[] args) {
        String[] m = {"A", "B", "C", "D", "E"};
        Set<Set<String>> combinationAll = combination(m);
        System.out.println(combinationAll);

    }

    private static Set<Set<String>> combination(String[] m) {
        Set<Set<String>> result = new HashSet<>();

        for (int i = 1; i < Math.pow(2, m.length) - 1; i++) {
            Set<String> eligibleCollections = new HashSet<>();
            // 依次将数字 i 与 2^n 按位与,判断第 n 位是否为 1
            for (int j = 0; j < m.length; j++) {
                if ((i & (int) Math.pow(2, j)) == Math.pow(2, j)) {
                    eligibleCollections.add(m[j]);
                }
            }
            result.add(eligibleCollections);
        }
        return result;
    }
}

小结



排列和组合算法在实际应用中很常见,而且他们的实现方法也非常具有参考意义。总的来说:排列用递归、组合用位运算。

关于本文有什么疑问可以在下面留言交流,如果您觉得本文对您有帮助,欢迎关注我的 微博 或 GitHub 。您也可以在我的 博客REPO 右上角点击 Watch 并选择 Releases only 项来 订阅 我的博客,有新文章发布会第一时间通知您。

原文地址:https://www.cnblogs.com/zhenbianshu/p/10712356.html

时间: 2024-10-10 09:43:08

迷人的算法-排列组合的相关文章

[经典算法] 排列组合-全排序

题目说明: 将一组数字.字母或符号进行排列,以得到不同的组合顺序,例如1 2 3这三个数的全排列有:1 2 3.1 3 2.2 1 3.2 3 1.3 1 2.3 2 1. 题目解析: 设一组数p = {r1, r2, r3, - ,rn}, 全排列为perm(p),pn = p – {rn}. 则perm(p) = r1perm(p1), r2perm(p2), r3perm(p3), - , rnperm(pn).当n = 1时perm(p} = r1. 如:求{1, 2, 3, 4, 5}

[经典算法] 排列组合-M元素集合的N个元素子集

题目说明: 假设有个集合拥有m个元素,任意的从集合中取出n个元素,则这n个元素所形成的可能子集有那些? 题目解析: 假设有5个元素的集合,取出3个元素的可能子集如下: {1 2 3}.{1 2 4 }.{1 2 5}.{1 3 4}.{1 3 5}.{1 4 5}.{2 3 4}.{2 3 5}.{2 4 5}.{3 4 5} 这些子集已经使用字典顺序排列,如此才可以观察出一些规则: 如果最右一个元素小于m,则如上面一样的不断加1 如果右边一位已至最大值,则加1的位置往左移 每次加1的位置往左移

[经典算法] 排列组合-N元素集合的所有子集(二)

题目说明: 给定一组数字或符号,按照字典序产生所有可能的集合(包括空集合),例如给定1 2 3,则可能的集合为:{}.{1}.{1,2}.{1,2,3}.{1,3}.{2}.{2,3}.{3}. 题目解析: 如果要产生字典顺序,例如若有4个元素,则: {} => {1} => {1,2} => {1,2,3} => {1,2,3,4} => {1,2,4} => {1,3} => {1,3,4} => {1,4} => {2} => {2,3}

STL_算法(17)_排列组合 next_permutation() perv_permutation()

next_permutation() prev_permutation() #include<iostream> #include<algorithm> #include<vector> // 排列组合开始之前一定要先排序 using namespace std; int main() { vector<int> ivec; ivec.push_back(1); ivec.push_back(2); ivec.push_back(3); for (vecto

算法练习:排列组合之子集合

问题描述 输入一个含有不同数字的序列,输出其所有子集合(含空集).要求:1)集合里元素有序排列:2)输出结果不含有重复集合 举例 输入序列{3,1,2} 输出:{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3} 问题分析 可以使用排列组合问题求解的第一种方法:分期摊还.初始化时,结果集合里含有一个空集.当扫描数列时,保留原有集合,同时将当前元素插入现有的所在集合中,从而形成新的集合.详见后面代码的GetSubSetsAmortized函数. 也可以使用第二种方法:f

java排列组合算法代码实现

原文:java排列组合算法代码实现 源代码下载地址:http://www.zuidaima.com/share/1550463479024640.htm java排列组合算法,有需要研究的童鞋可以下载,运行结果如下: package com.zuidaima.test; /** *@author www.zuidaima.com **/ public class Pailie { public static void main(String[] args) { int[] ia = {1, 2,

利用标准库算法求解排列组合

以前求序列的排列时,最常用的方法就是递归回溯,现在发现其实像这样有特定算法的重复性工作是可以在STL标准库中找到答案的. 在STL的变序性算法中,有两个用于排列元素的算法分别如下: bool next_permutation(Iterator beg,Iterator end) bool prev_permutation(Iterator beg,Iterator end) 这两个算法的功能也很简单,next_permutation()会改变区间(beg,end)内的元素次序,使它们符合"下一个

c# 排列组合算法

//排列组合 public class FullArrange { /// <summary> /// 排列组合 /// </summary> /// <param name="str">字符串</param> /// <param name="splitStr">分割的符号,比如";"</param> /// <returns></returns>

算法:C++排列组合

题目:给定1-n数字,排列组合. 解法:递归.第一个数字有n种选择,第二个数字有n-1种选择,依次递归排列输出.用数组表示n个数字,用过的数字置0. 实现语言:C++ #include <iostream> using namespace std; /************************************************************************/ /* num : 需要排列的数组 count : 数组总数 numC: 已经排列的数组 iUse: