L1 与 L2 正则化

参考这篇文章:

https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc

https://blog.csdn.net/jinping_shi/article/details/52433975

参考这篇文章:

https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc

https://blog.csdn.net/jinping_shi/article/details/52433975

参考这篇文章:

https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc

https://blog.csdn.net/jinping_shi/article/details/52433975

参考这篇文章:

https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc

https://blog.csdn.net/jinping_shi/article/details/52433975

参考这篇文章:

https://baijiahao.baidu.com/s?id=1621054167310242353&wfr=spider&for=pc

https://blog.csdn.net/jinping_shi/article/details/52433975

1. L2 正则化直观解释
L2 正则化公式非常简单,直接在原来的损失函数基础上加上权重参数的平方和:

L=Ein+λ∑jw2j
L=Ein+λ∑jwj2
其中,Ein 是未包含正则化项的训练样本误差,λ 是正则化参数,可调。但是正则化项是如何推导的?接下来,我将详细介绍其中的物理意义。

我们知道,正则化的目的是限制参数过多或者过大,避免模型更加复杂。例如,使用多项式模型,如果使用 10 阶多项式,模型可能过于复杂,容易发生过拟合。所以,为了防止过拟合,我们可以将其高阶部分的权重 w 限制为 0,这样,就相当于从高阶的形式转换为低阶。

为了达到这一目的,最直观的方法就是限制 w 的个数,但是这类条件属于 NP-hard 问题,求解非常困难。所以,一般的做法是寻找更宽松的限定条件:

∑jw2j≤C
∑jwj2≤C
上式是对 w 的平方和做数值上界限定,即所有w 的平方和不超过参数 C。这时候,我们的目标就转换为:最小化训练样本误差 Ein,但是要遵循 w 平方和小于 C 的条件。

下面,我用一张图来说明如何在限定条件下,对 Ein 进行最小化的优化。

如上图所示,蓝色椭圆区域是最小化 Ein 区域,红色圆圈是 w 的限定条件区域。在没有限定条件的情况下,一般使用梯度下降算法,在蓝色椭圆区域内会一直沿着 w 梯度的反方向前进,直到找到全局最优值 wlin。例如空间中有一点 w(图中紫色点),此时 w 会沿着 -∇Ein 的方向移动,如图中蓝色箭头所示。但是,由于存在限定条件,w 不能离开红色圆形区域,最多只能位于圆上边缘位置,沿着切线方向。w 的方向如图中红色箭头所示。

那么问题来了,存在限定条件,w 最终会在什么位置取得最优解呢?也就是说在满足限定条件的基础上,尽量让 Ein 最小。

我们来看,w 是沿着圆的切线方向运动,如上图绿色箭头所示。运动方向与 w 的方向(红色箭头方向)垂直。运动过程中,根据向量知识,只要 -∇Ein 与运行方向有夹角,不垂直,则表明 -∇Ein 仍会在 w 切线方向上产生分量,那么 w 就会继续运动,寻找下一步最优解。只有当 -∇Ein 与 w 的切线方向垂直时,-∇Ein在 w 的切线方向才没有分量,这时候 w 才会停止更新,到达最接近 wlin 的位置,且同时满足限定条件。

-∇Ein 与 w 的切线方向垂直,即 -∇Ein 与 w 的方向平行。如上图所示,蓝色箭头和红色箭头互相平行。这样,根据平行关系得到:

−∇Ein+λw=0
−∇Ein+λw=0
移项,得:

∇Ein+λw=0
∇Ein+λw=0
这样,我们就把优化目标和限定条件整合在一个式子中了。也就是说只要在优化 Ein 的过程中满足上式,就能实现正则化目标。

接下来,重点来了!根据最优化算法的思想:梯度为 0 的时候,函数取得最优值。已知 ∇Ein 是 Ein 的梯度,观察上式,λw 是否也能看成是某个表达式的梯度呢?

当然可以!λw 可以看成是 1/2λw*w 的梯度:

∂∂w(12λw2)=λw
∂∂w(12λw2)=λw
这样,我们根据平行关系求得的公式,构造一个新的损失函数:

Eaug=Ein+λ2w2
Eaug=Ein+λ2w2
之所以这样定义,是因为对 Eaug 求导,正好得到上面所求的平行关系式。上式中等式右边第二项就是 L2 正则化项。

这样, 我们从图像化的角度,分析了 L2 正则化的物理意义,解释了带 L2 正则化项的损失函数是如何推导而来的。

2. L1 正则化直观解释
L1 正则化公式也很简单,直接在原来的损失函数基础上加上权重参数的绝对值:

L=Ein+λ∑j|wj|
L=Ein+λ∑j|wj|
我仍然用一张图来说明如何在 L1 正则化下,对 Ein 进行最小化的优化。

Ein 优化算法不变,L1 正则化限定了 w 的有效区域是一个正方形,且满足 |w| < C。空间中的点 w 沿着 -∇Ein 的方向移动。但是,w 不能离开红色正方形区域,最多只能位于正方形边缘位置。其推导过程与 L2 类似,此处不再赘述。

3. L1 与 L2 解的稀疏性
介绍完 L1 和 L2 正则化的物理解释和数学推导之后,我们再来看看它们解的分布性。

以二维情况讨论,上图左边是 L2 正则化,右边是 L1 正则化。从另一个方面来看,满足正则化条件,实际上是求解蓝色区域与黄色区域的交点,即同时满足限定条件和 Ein 最小化。对于 L2 来说,限定区域是圆,这样,得到的解 w1 或 w2 为 0 的概率很小,很大概率是非零的。

对于 L1 来说,限定区域是正方形,方形与蓝色区域相交的交点是顶点的概率很大,这从视觉和常识上来看是很容易理解的。也就是说,方形的凸点会更接近 Ein 最优解对应的 wlin 位置,而凸点处必有 w1 或 w2 为 0。这样,得到的解 w1 或 w2 为零的概率就很大了。所以,L1 正则化的解具有稀疏性。

扩展到高维,同样的道理,L2 的限定区域是平滑的,与中心点等距;而 L1 的限定区域是包含凸点的,尖锐的。这些凸点更接近 Ein 的最优解位置,而在这些凸点上,很多 wj 为 0。

关于 L1 更容易得到稀疏解的原因,有一个很棒的解释,请见下面的链接:

https://www.zhihu.com/question/37096933/answer/70507353

4. 正则化参数 λ
正则化是结构风险最小化的一种策略实现,能够有效降低过拟合。损失函数实际上包含了两个方面:一个是训练样本误差。一个是正则化项。其中,参数 λ 起到了权衡的作用。

以 L2 为例,若 λ 很小,对应上文中的 C 值就很大。这时候,圆形区域很大,能够让 w 更接近 Ein 最优解的位置。若 λ 近似为 0,相当于圆形区域覆盖了最优解位置,这时候,正则化失效,容易造成过拟合。相反,若 λ 很大,对应上文中的 C 值就很小。这时候,圆形区域很小,w 离 Ein 最优解的位置较远。w 被限制在一个很小的区域内变化,w 普遍较小且接近 0,起到了正则化的效果。但是,λ 过大容易造成欠拟合。欠拟合和过拟合是两种对立的状态。

梯度角度分析

1)、L1正则化

L1正则化的损失函数为:

上式可知,当w大于0时,更新的参数w变小;当w小于0时,更新的参数w变大;所以,L1正则化容易使参数变为0,即特征稀疏化。

2)、L2正则化

L2正则化的损失函数为:

由上式可知,正则化的更新参数相比于未含正则项的更新参数多了

项,当w趋向于0时,参数减小的非常缓慢,因此L2正则化使参数减小到很小的范围,但不为0。

原文地址:https://www.cnblogs.com/Lin-Yi/p/10532963.html

时间: 2024-10-03 23:04:17

L1 与 L2 正则化的相关文章

L1与L2正则化

目录 过拟合 结构风险最小化原理 正则化 L2正则化 L1正则化 L1与L2正则化 参考链接 过拟合 机器学习中,如果参数过多.模型过于复杂,容易造成过拟合. 结构风险最小化原理 在经验风险最小化(训练误差最小化)的基础上,尽可能采用简单的模型,以提高模型泛化预测精度. 正则化 为了避免过拟合,最常用的一种方法是使用正则化,例如L1和L2正则化. 所谓的正则化,就是在原来损失函数的基础上,加了一些正则化项,或者叫做模型复杂度惩罚项. L2正则化 L2正则化即:\(L=E_{in}+\lambda

机器学习之路: python线性回归 过拟合 L1与L2正则化

git:https://github.com/linyi0604/MachineLearning 正则化: 提高模型在未知数据上的泛化能力 避免参数过拟合正则化常用的方法: 在目标函数上增加对参数的惩罚项 削减某一参数对结果的影响力度 L1正则化:lasso 在线性回归的目标函数后面加上L1范数向量惩罚项. f = w * x^n + b + k * ||w||1 x为输入的样本特征 w为学习到的每个特征的参数 n为次数 b为偏置.截距 ||w||1 为 特征参数的L1范数,作为惩罚向量 k 为

l1和l2正则化

https://blog.csdn.net/tianguiyuyu/article/details/80438630 以上是莫烦对L1和L2的理解 l2正则:权重的平方和,也就是一个圆 l1正则:权重的绝对值之和,等价与一个正方形. 图中,正则项和损失项的交点就是最优解的位置,我们可以看到,在只有2个参数的情况下,l1倾向使得某个参数直接为0:l2倾向使得某些参数逼近0 再看下吴恩达的理解 正则化的意义:在于让高阶的参数逼近0,使其对拟合函数的贡献变小:可以看到theta3和theta4,我们给

L1 和L2正则化,拉普拉斯分布和高斯分布

正则化是为了防止过拟合. 1. 范数 范数是衡量某个向量空间(或矩阵)中的每个向量以长度或大小. 范数的一般化定义:对实数p>=1, 范数定义如下: L1范数: 当p=1时,是L1范数,其表示某个向量中所有元素绝对值的和. L2范数: 当p=2时,是L2范数, 表示某个向量中所有元素平方和再开根, 也就是欧几里得距离公式. 2. 拉普拉斯分布 如果随机变量的概率密度函数分布为: 那么它就是拉普拉斯分布.其中,μ 是数学期望,b > 0 是振幅.如果 μ = 0,那么,正半部分恰好是尺度为 1/

正则化方法:L1和L2 regularization、数据集扩增、dropout

本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习/深度学习算法中常用的正则化方法.(本文会不断补充) 正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程,网络在training data上的error渐渐减小,但是在验证集上的error却反而渐渐增大--因为训练出来的网络过拟合了训练集,对训练集外的数据却不work

正则化方法:L1和L2 regularization、数据集扩增、dropout(转)

ps:转的.当时主要是看到一个问题是L1 L2之间有何区别,当时对l1与l2的概念有些忘了,就百度了一下.看完这篇文章,看到那个对W减小,网络结构变得不那么复杂的解释之后,满脑子的6666-------->把网络权重W看做为对上一层神经元的一个WX+B的线性函数模拟一个曲线就好.知乎大神真的多. 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] 本文是<Neural networks and deep learning>概览 中第三章的一部分,讲机器学习/深度学习算

机器学习中正则化项L1和L2的直观理解

正则化(Regularization) 机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作?1-norm和?2-norm,中文称作L1正则化和L2正则化,或者L1范数和L2范数. L1正则化和L2正则化可以看做是损失函数的惩罚项.对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归).下图是Python中Lasso回归的损失函数,式中加号后面一项α||w||1即为L1正则化项. 下图是Python中Ri

正则化项L1和L2

L1和L2正则化项,又叫做惩罚项,是为了限制模型的参数,防止模型过你和而加在损失函数后面的一项. L1是模型的各个参数的绝对值之和 L2是模型各个参数的平方和的开方值 区别: L1会趋向于产生少量的特征,而其他的特征都是0. 从图形上理解:应为最优的参数值很大概率出现在坐标轴上,这样就导致某一维的权重为0,产生稀疏权重矩阵. 从贝叶斯的角度理解:加上正则化项L1,等同于对θ假设一个先验分布为拉普拉斯分布 L2会选择更对的特征,这些特征都会接近于0.最优参数值很小概率出现在坐标轴上,因为每一维的参

『教程』L0、L1与L2范数_简化理解

『教程』L0.L1与L2范数 一.L0范数.L1范数.参数稀疏 L0范数是指向量中非0的元素的个数.如果我们用L0范数来规则化一个参数矩阵W的话,就是希望W的大部分元素都是0,换句话说,让参数W是稀疏的. 既然L0可以实现稀疏,为什么不用L0,而要用L1呢?一是因为L0范数很难优化求解(NP难问题),二是L1范数是L0范数的最优凸近似,而且它比L0范数要容易优化求解.所以大家才把目光和万千宠爱转于L1范数. 总结:L1范数和L0范数可以实现稀疏,L1因具有比L0更好的优化求解特性而被广泛应用.