Eclipse远程提交hadoop集群任务

文章概览:

1、前言

2、Eclipse查看远程hadoop集群文件

3、Eclipse提交远程hadoop集群任务

4、小结

1 前言

  Hadoop高可用品台搭建完备后,参见《Hadoop高可用平台搭建》,下一步是在集群上跑任务,本文主要讲述Eclipse远程提交hadoop集群任务。

Eclipse查看远程hadoop集群文件

2.1 编译hadoop eclipse 插件

  Hadoop集群文件查看可以通过webUI或hadoop Cmd,为了在Eclipse上方便增删改查集群文件,我们需要编译hadoop eclipse 插件,步骤如下:

  ① 环境准备

    JDK环境配置  配置JAVA_HOME,并将bin目录配置到path

    ANT环境配置  配置ANT_HOME,并将bin目录配置到path

    在cmd查看:

    

  ② 软件准备

    hadoop2x-eclipse-plugin-master  https://github.com/winghc/hadoop2x-eclipse-plugin

    hadoop-common-2.2.0-bin-master  https://github.com/srccodes/hadoop-common-2.2.0-bin

    hadoop-2.6.0

    eclipse-jee-luna-SR2-win32-x86_64

  ③ 编译

  注:软件位置为自己机器上位置,请勿照搬。

E:\>cd E:\hadoop\hadoop2x-eclipse-plugin-master\src\contrib\eclipse-plugin

E:\hadoop\hadoop2x-eclipse-plugin-master\src\contrib\eclipse-plugin>ant jar -Dve
rsion=2.6.0 -Declipse.home=E:\eclipse -Dhadoop.home=E:\hadoop\hadoop-2.6.0
Buildfile: E:\hadoop\hadoop2x-eclipse-plugin-master\src\contrib\eclipse-plugin\b
uild.xml

check-contrib:

init:
     [echo] contrib: eclipse-plugin

init-contrib:

ivy-probe-antlib:

ivy-init-antlib:

ivy-init:
[ivy:configure] :: Ivy 2.1.0 - 20090925235825 :: http://ant.apache.org/ivy/ ::
[ivy:configure] :: loading settings :: file = E:\hadoop\hadoop2x-eclipse-plugin-
master\ivy\ivysettings.xml

ivy-resolve-common:

ivy-retrieve-common:
[ivy:cachepath] DEPRECATED: ‘ivy.conf.file‘ is deprecated, use ‘ivy.settings.fil
e‘ instead
[ivy:cachepath] :: loading settings :: file = E:\hadoop\hadoop2x-eclipse-plugin-
master\ivy\ivysettings.xml

compile:
     [echo] contrib: eclipse-plugin
    [javac] E:\hadoop\hadoop2x-eclipse-plugin-master\src\contrib\eclipse-pluginbuild.xml:76: warning: ‘includeantruntime‘ was not set, defaulting to build.sysc
lasspath=last; set to false for repeatable builds

jar:

BUILD SUCCESSFUL
Total time: 10 seconds

    成功编译,生成如下图:

      

  ④ 将改文件拷贝到Eclipse中plugins目录下,重启Eclipse会出现:

    

2.2 配置hadoop选项

  打开Map/Reduce Locations

     

  编辑Map/Reduce配置项:

     

  根据上一篇,我们配置用户hadoop,Active HDFS和Active NM位置信息。

  完成后,就可以在Eclipse中查看HDFS文件信息:

    

2.3 hdfs简单实例

  我们编写一个hdfs简单实例,来远程操作hadoop。

 1 package com.diexun.cn.mapred;
 2
 3 import java.io.IOException;
 4 import java.net.URI;
 5 import java.net.URISyntaxException;
 6
 7 import org.apache.hadoop.conf.Configuration;
 8 import org.apache.hadoop.fs.FSDataOutputStream;
 9 import org.apache.hadoop.fs.FileSystem;
10 import org.apache.hadoop.fs.Path;
11
12 public class MR2Test {
13
14     static final String INPUT_PATH = "hdfs://192.168.137.101:9000/hello";
15     static final String OUTPUT_PATH = "hdfs://192.168.137.101:9000/output";
16
17     public static void main(String[] args) throws IOException, URISyntaxException {
18         Configuration conf = new Configuration();
19         final FileSystem fileSystem = FileSystem.get(new URI(INPUT_PATH), conf);
20         final Path outPath = new Path(OUTPUT_PATH);
21         if (fileSystem.exists(outPath)) {
22             fileSystem.delete(outPath, true);
23         }
24
25         FSDataOutputStream fsDataOutputStream = fileSystem.create(new Path(INPUT_PATH));
26         fsDataOutputStream.writeBytes("welcome to here ...");
27     }
28
29 }

  用Eclipse查看HDFS文件,发现hello文件被修改为“welcome to here ...”。

3 Eclipse提交远程hadoop集群任务

  正式进入本文的正题,新建一个Map/Reduce Project,会引用很多jar(注:平常我们都是新建Maven项目进行开发,有利于程序迁移及体积,后面的文章会以Maven构建),将自带WordCount实例拷贝到Eclipse,

配置运行参数:(注:填写hdfs集群上路径,本地路径无效)

  

  执行,出现线面结果:

log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Exception in thread "main" java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z
    at org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Native Method)
    at org.apache.hadoop.io.nativeio.NativeIO$Windows.access(NativeIO.java:557)
    at org.apache.hadoop.fs.FileUtil.canRead(FileUtil.java:977)
    at org.apache.hadoop.util.DiskChecker.checkAccessByFileMethods(DiskChecker.java:187)
    at org.apache.hadoop.util.DiskChecker.checkDirAccess(DiskChecker.java:174)
    at org.apache.hadoop.util.DiskChecker.checkDir(DiskChecker.java:108)
    at org.apache.hadoop.fs.LocalDirAllocator$AllocatorPerContext.confChanged(LocalDirAllocator.java:285)
    at org.apache.hadoop.fs.LocalDirAllocator$AllocatorPerContext.getLocalPathForWrite(LocalDirAllocator.java:344)
    at org.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:150)
    at org.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:131)
    at org.apache.hadoop.fs.LocalDirAllocator.getLocalPathForWrite(LocalDirAllocator.java:115)
    at org.apache.hadoop.mapred.LocalDistributedCacheManager.setup(LocalDistributedCacheManager.java:131)
    at org.apache.hadoop.mapred.LocalJobRunner$Job.<init>(LocalJobRunner.java:163)
    at org.apache.hadoop.mapred.LocalJobRunner.submitJob(LocalJobRunner.java:731)
    at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:536)
    at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1296)
    at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1293)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:415)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
    at org.apache.hadoop.mapreduce.Job.submit(Job.java:1293)
    at org.apache.hadoop.mapreduce.Job.waitForCompletion(Job.java:1314)
    at WordCount.main(WordCount.java:76)

  方便后面打印,先添加log4j.properties文件:

log4j.rootLogger=DEBUG,stdout,R

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%5p - %m%n

log4j.appender.R=org.apache.log4j.RollingFileAppender
log4j.appender.R.File=mapreduce_test.log
log4j.appender.R.MaxFileSize=1MB
log4j.appender.R.MaxBackupIndex=1
log4j.appender.R.layout=org.apache.log4j.PatternLayout
log4j.appender.R.layout.ConversionPattern=%p %t %c - %m%n
log4j.logger.com.codefutures=INFO 

  根据出错提示,是由于NativeIO.java中return access0(path, desiredAccess.accessRight());导致,此句注,改为返回return true。 

  修改源码后,在项目里创建和Apache中一样的包,此包会覆盖Apache源码包,如下:

  

  再次执行:

 INFO - Job job_local401325246_0001 completed successfully
DEBUG - PrivilegedAction as:wangxiaolong (auth:SIMPLE) from:org.apache.hadoop.mapreduce.Job.getCounters(Job.java:764)
 INFO - Counters: 38
    File System Counters
        FILE: Number of bytes read=16290
        FILE: Number of bytes written=545254
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=38132
        HDFS: Number of bytes written=6834
        HDFS: Number of read operations=15
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=4
    Map-Reduce Framework
        Map input records=174
        Map output records=1139
        Map output bytes=23459
        Map output materialized bytes=7976
        Input split bytes=99
        Combine input records=1139
        Combine output records=286
        Reduce input groups=286
        Reduce shuffle bytes=7976
        Reduce input records=286
        Reduce output records=286
        Spilled Records=572
        Shuffled Maps =1
        Failed Shuffles=0
        Merged Map outputs=1
        GC time elapsed (ms)=18
        CPU time spent (ms)=0
        Physical memory (bytes) snapshot=0
        Virtual memory (bytes) snapshot=0
        Total committed heap usage (bytes)=468713472
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters
        Bytes Read=19066
    File Output Format Counters
        Bytes Written=6834

  确实已经成功执行了,可发现“INFO - Job job_local401325246_0001 completed successfully”,

  观察http://nns:8088/cluster/apps也没有发现该任务,说明此任务并未提交到集群执行。

  添加配置文件,如下:

  

   配置文件直接从集群下载(注:集群中yarn-site.xml配置中“yarn.resourcemanager.ha.id”是有所不同的),该下载哪份配置?

  由于集群中Active RM是nns,故下载nns中yarn-site.xml配置。执行:

Error: java.lang.RuntimeException: java.lang.ClassNotFoundException: Class com.diexun.cn.mapred.WordCount$TokenizerMapper not found
    at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:2074)
    at org.apache.hadoop.mapreduce.task.JobContextImpl.getMapperClass(JobContextImpl.java:186)
    at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:742)
    at org.apache.hadoop.mapred.MapTask.run(MapTask.java:341)
    at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:163)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:422)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
    at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:158)
Caused by: java.lang.ClassNotFoundException: Class com.diexun.cn.mapred.WordCount$TokenizerMapper not found
    at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:1980)
    at org.apache.hadoop.conf.Configuration.getClass(Configuration.java:2072)
    ... 8 more

  没有找到对应的代码文件,我们把代码打包,并设置conf,conf.set("mapred.jar", "**.jar"); 再次执行:

Exception message: /bin/bash: line 0: fg: no job control

Stack trace: ExitCodeException exitCode=1: /bin/bash: line 0: fg: no job control

    at org.apache.hadoop.util.Shell.runCommand(Shell.java:538)
    at org.apache.hadoop.util.Shell.run(Shell.java:455)
    at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:715)
    at org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor.launchContainer(DefaultContainerExecutor.java:211)
    at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
    at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
    at java.lang.Thread.run(Thread.java:745)

  出现如下错误,是由于平台引起,在hadoop2.2~2.5中需修改源码编译(略),hadoop2.6已经可以直接添加配置,conf.set("mapreduce.app-submission.cross-platform", "true");或直接到mapred-site.xml中配置。再次执行:

 INFO - Job job_1438912697979_0023 completed successfully
DEBUG - PrivilegedAction as:wangxiaolong (auth:SIMPLE) from:org.apache.hadoop.mapreduce.Job.getCounters(Job.java:764)
DEBUG - IPC Client (1894045259) connection to dn2/192.168.137.104:56327 from wangxiaolong sending #217
DEBUG - IPC Client (1894045259) connection to dn2/192.168.137.104:56327 from wangxiaolong got value #217
DEBUG - Call: getCounters took 139ms
 INFO - Counters: 49
    File System Counters
        FILE: Number of bytes read=149
        FILE: Number of bytes written=325029
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=255
        HDFS: Number of bytes written=86
        HDFS: Number of read operations=9
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=2
    Job Counters
        Launched map tasks=2
        Launched reduce tasks=1
        Data-local map tasks=2
        Total time spent by all maps in occupied slots (ms)=45308
        Total time spent by all reduces in occupied slots (ms)=9324
        Total time spent by all map tasks (ms)=45308
        Total time spent by all reduce tasks (ms)=9324
        Total vcore-seconds taken by all map tasks=45308
        Total vcore-seconds taken by all reduce tasks=9324
        Total megabyte-seconds taken by all map tasks=46395392
        Total megabyte-seconds taken by all reduce tasks=9547776
    Map-Reduce Framework
        Map input records=3
        Map output records=12
        Map output bytes=119
        Map output materialized bytes=155
        Input split bytes=184
        Combine input records=12
        Combine output records=12
        Reduce input groups=11
        Reduce shuffle bytes=155
        Reduce input records=12
        Reduce output records=11
        Spilled Records=24
        Shuffled Maps =2
        Failed Shuffles=0
        Merged Map outputs=2
        GC time elapsed (ms)=827
        CPU time spent (ms)=4130
        Physical memory (bytes) snapshot=479911936
        Virtual memory (bytes) snapshot=6192558080
        Total committed heap usage (bytes)=261115904
    Shuffle Errors
        BAD_ID=0
        CONNECTION=0
        IO_ERROR=0
        WRONG_LENGTH=0
        WRONG_MAP=0
        WRONG_REDUCE=0
    File Input Format Counters
        Bytes Read=71
    File Output Format Counters
        Bytes Written=86

  至此,任务已经成功提交至集群执行。

  有时我们想用我们特定用户去执行任务(注:dfs.permissions.enabled为true时,往往会涉及用户权限问题),可以在VM arguments中设置,这样任务的提交这就变成了设定者。

  

4 小结

  本文主要阐述hadoop eclipse插件的编译与远程提交hadoop集群任务。hadoop eclipse插件的编译需要注意软件安装位置对应。远程提交hadoop集群任务需留意,本地与HDFS文件路径异同,加载特定文件配置,指定特定用户,跨平台异常等问题。

参考:

http://www.cxyclub.cn/n/48423/

http://zy19982004.iteye.com/blog/2031172

http://www.iteye.com/blogs/subjects/Hadoop

http://qindongliang.iteye.com/blog/2078452

http://qindongliang.iteye.com/blog/2119620

http://www.aboutyun.com/forum.php?mod=viewthread&tid=8498

时间: 2024-11-02 02:54:33

Eclipse远程提交hadoop集群任务的相关文章

Eclipse远程调试Hadoop集群

准备工作: Hadoop安装完成(我的版本为1.2.1). 搞一个比较干净的Eclipse. 下载与Hadoop版本相匹配的插件:hadoop-eclipse-plugin-1.2.1.jar 安装.配置: 1. 将插件拷贝到eclipse安装目录的plugins文件夹中,如果重新打开eclipse后看到有如下视图,则说明你的hadoop插件已经安装成功了. Hadoop installation directory指定你的Hadoop解压了路径. 2. 设置MapReduce Location

windows下在eclipse上远程连接hadoop集群调试mapreduce错误记录

第一次跑mapreduce,记录遇到的几个问题,hadoop集群是CDH版本的,但我windows本地的jar包是直接用hadoop2.6.0的版本,并没有特意找CDH版本的 1.Exception in thread "main" java.lang.NullPointerException atjava.lang.ProcessBuilder.start 下载Hadoop2以上版本时,在Hadoop2的bin目录下没有winutils.exe和hadoop.dll,网上找到对应版本

在windows远程提交任务给Hadoop集群(Hadoop 2.6)

我使用3台Centos虚拟机搭建了一个Hadoop2.6的集群.希望在windows7上面使用IDEA开发mapreduce程序,然后提交的远程的Hadoop集群上执行.经过不懈的google终于搞定 开始我使用hadoop的eclipse插件来执行job,竟然成功了,后来发现mapreduce是在本地执行的,根本没有提交到集群上.我把hadoop的4个配置文件加上后就开始出现了问题. 1:org.apache.hadoop.util.Shell$ExitCodeException: /bin/

Hadoop集群 -Eclipse开发环境设置

1.Hadoop开发环境简介 1.1 Hadoop集群简介 Java版本:jdk-6u31-linux-i586.bin Linux系统:CentOS6.0 Hadoop版本:hadoop-1.0.0.tar.gz 1.2 Windows开发简介 Java版本:jdk-6u31-windows-i586.exe Win系统:Windows 7 旗舰版 Eclipse软件:eclipse-jee-indigo-SR1-win32.zip | eclipse-jee-helios-SR2-win32

Hadoop集群(第7期)_Eclipse开发环境设置

1.Hadoop开发环境简介 1.1 Hadoop集群简介 Java版本:jdk-6u31-linux-i586.bin Linux系统:CentOS6.0 Hadoop版本:hadoop-1.0.0.tar.gz 1.2 Windows开发简介 Java版本:jdk-6u31-windows-i586.exe Win系统:Windows 7 旗舰版 Eclipse软件:eclipse-jee-indigo-SR1-win32.zip | eclipse-jee-helios-SR2-win32

Hadoop集群_Eclipse开发环境设置

1.Hadoop开发环境简介 1.1 Hadoop集群简介 Java版本:jdk-6u31-linux-i586.bin Linux系统:CentOS6.0 Hadoop版本:hadoop-1.0.0.tar.gz 1.2 Windows开发简介 Java版本:jdk-6u31-windows-i586.exe Win系统:Windows 7 旗舰版 Eclipse软件:eclipse-jee-indigo-SR1-win32.zip | eclipse-jee-helios-SR2-win32

【hadoop】——window下连接hadoop集群基础超详细版

1.Hadoop开发环境简介 1.1 Hadoop集群简介 Java版本:jdk-6u31-linux-i586.bin Linux系统:CentOS6.0 Hadoop版本:hadoop-1.0.0.tar.gz 1.2 Windows开发简介 Java版本:jdk-6u31-windows-i586.exe Win系统:Windows 7 旗舰版 Eclipse软件:eclipse-jee-indigo-SR1-win32.zip | eclipse-jee-helios-SR2-win32

Hadoop4 利用VMware搭建自己的hadoop集群

前言:       前段时间自己学习如何部署伪分布式模式的hadoop环境,之前由于工作比较忙,学习的进度停滞了一段时间,所以今天抽出时间把最近学习的成果和大家分享一下.       本文要介绍的是如何利用VMware搭建自己的hadoop的集群.如果大家想了解伪分布式的大家以及eclipse中的hadoop编程,可以参考我之前的三篇文章. 1.在Linux环境中伪分布式部署hadoop(SSH免登陆),运行WordCount实例成功. http://www.cnblogs.com/Purple

Eclipse远程提交MapReduce任务到Hadoop集群

一.介绍 以前写完MapReduce任务以后总是打包上传到Hadoop集群,然后通过shell命令去启动任务,然后在各个节点上去查看Log日志文件,后来为了提高开发效率,需要找到通过Ecplise直接将MaprReduce任务直接提交到Hadoop集群中.该章节讲述用户如何从Eclipse的压缩包最终完成Eclipse提价任务给MapReduce集群. 二.详解 1.安装Eclipse,安装hadoop插件 (1)首先下载Eclipse的压缩包,然后可以从这里下载hadoop 2.7.1的ecp